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Abstract 
We conduct an extensive computational study of shortest 
paths algorithms, including some very recent algorithms. We 
also suggest new algorithms motivated by the experimental 
results and prove interesting theoretical results suggested by 
the experimental data. Our computational study is based 
on several natural problem classes which identify strengths 
and weaknesses of various algorithms. These problem 
classes and algorithm implementations form an environment 
for testing the performance of shortest paths algorithms. 
The interaction between the experimental evaluation of 
algorithm behavior and the theoretical analysis of algorithm 
performance plays an important role in our research. 

1 Introduction 
The shortest paths problem is one of the most funda- 
mental network optimization problems. This problem 
comes up in practice and arises as a subproblem in many 
network optimization algorithms. Algorithms for this 
problem have been studied for a long time. See e.g. 
[2, 4, 5, 6, 17, 18, 201. However, advances in the theory 
of shortest paths algorithms are still being made. See 
e.g. [I, 8, 9, 131. A good description of the classical 
algorithms and their implementations appears in [lo]. 

On a network with negative-length arcs, the best 
currently known time bound of O(nm) is achieved by 
the Bellman-Ford-Moore algorithm [2, 6, 181. (Here n 
and m denote the number of nodes and arcs in the 
network, respectively.) With the additional assump- 
tion that arc lengths are integers bounded below by 
-N 5 -2, the O(fimlogiV) bound [13] improves the 
Bellman-Ford-Moore bound unless iV is very large. If 
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the arc lengths are nonnegative, implementations of Di- 
jkstra’s algorithm achieve better bounds. An imple- 
mentation of [7] runs in O(m + nlogn) time. An im- 
proved time bound of O(m + n log n/ log log n) [8] can 
be obtained in a random access machine computation 
model that allows certain word operations. Under the 
assumption that arc lengths are integers in the inter- 
val [0, . . . 

& 
, C , C 2 2, the implementation of [l] runs in 

O(m+n 0gC) time. 
In this paper we study practical performance of 

several shortest paths algorithms, including established 
methods [2,5,6, 11, 17, 18, 19,201, recently proposed al- 
gorithms [l, 141, and new algorithms. The development 
of the new algorithms was based on the experimental 
feedback. We give theoretical explanation of the ob- 
served behavior of the algorithm-3 and prove complexity 
bounds on the new algorithms. 

We also prove an interesting result suggested by the 
experimental data. This result, summarized in Theorem 
11.1, shows that some algorithms, for example the 
Bellman-Ford-Moore algorithm, are potential-invariant, 
i.e., behave in exactly the same way on two networks 
one of which is obtained from the other one by replacing 
the lengths by the reduced costs with respect of a 
potential function. This result has several interesting 
implications. 

An important part of our work is the development 
of several natural shortest paths problem generators and 
their use to create families of problems. Of special 
interest to us are the families that give insight into 
the relative algorithm performance, robustness, and 
dependence of the performance on the network structure 
and the arc cost distribution. 

The collection of algorithms we test is larger than 
that of any previous study we are aware of, and the 
set of test problems is much richer. We show that the 
algorithm performance varies significantly more than 
previously believed and that some algorithms previously 
considered robust may fail dramatically. For example, 
we exhibit a family of problems that are hard for all 
established algorithms, although a recent algorithm of 
[14] solves these problems quickly (see Section 7). 

Although our research does not produce a single 
best code for the shortest paths problem, two codes we 
developed are very competitive in their domains, net- 
works with nonnegative and mixed arc lengths, respec- 
tively. One of the codes is a new implementation of Di- 
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jkstra’s algorithm using a double bucket data structure. 
Another code, which is a modification of a recent algo- 
rithm of Goldberg and Radzik [14], matches the O(nm) 
bound of the Bellman-Ford-Moore algorithm and also 
achieves the optimal O(m + n) time bound on acyclic 
networks. 

Our codes, generators, and generator inputs form 
a testing environment for shortest paths algorithms. A 
new code can be compared against the existing ones to 
determine its relative performance. The environment 
can be augmented as interesting codes, problem gener- 
ators, and problem families are developed. Our codes, 
generators, and generator inputs are available through 
a mail server. 

The shortest paths environment can be used in 
several ways. Practitioners looking for an efficient code 
for an application can test our codes on their problems 
and select one that performs well. The number of codes 
which need to be compared can be narrowed down 
using the results of the current paper. Researchers 
evaluating a new shortest paths code can run the code 
on the problem families we suggest and compare its 
performance with the performance of our codes. The 
environment can also be used in teaching algorithms to 
demonstrate importance of proper algorithms and data 
structures. 

2 Preliminaries 
The input to the single-source shortest paths problem 
is (G, s, e), where G = (V, E) is a directed graph, 
L : E + R is a length function, and s E V is the 
source node. The goal is to find shortest paths from 
s to all other nodes of G or to find a negative length 
cycle in G. If G has a negative length cycle, we say 
that the problem is infeasible. We assume, without loss 
of generality, that all nodes are reachable from s in G. 
We denote [VI by n, IEl by m, and the biggest absolute 
value of an arc length by C. 

A potential function is a real-valued function on 
nodes. Given a potential function d, we define a reduced 
cost function Cd : E + R by &(v, ‘w) = e(v, UJ) + d(v) - 
d(w). We say that an arc a is admissible if &(a) 5 0, 
and denote the set of admissible arcs by Ed. The 
admissible graph is defined by Gd = (V, Ed). Note that 
if d(v) < 00 and d(w) = co, the arc (v, w) is admissible. 
If d(v) = d(w) = 00, we define &(zI, w) = C(w, w). 

A shortest paths tree of G is a spanning tree rooted 
at s such that for any v E V, the reversal of the IJ to s 
path in the tree is a shortest path from s to v. 

3 The Labeling Method 
In this section we briefly outline the general labeling 
method for solving the shortest paths problem. (See 
e.g. [3, 10, 221 for more detail.) 

For every node v, the method maintains its 
potential d(v), parent T(V), and status S(V) E 
{ unreached, labeled, scanned}. The potential of a node 
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v is also called the distance label of v. Initially for every 
node w, d(w) = 00, X(V) = nil, and S(V) = unreached. 
The method starts by setting d(s) = 0 and S(S) = 
labeled, and applies the SCAN operation to labeled nodes 
until none exists, in which case the method terminates. 
The SCAN operation applies to a labeled node v. For 
every (v, w) E E such that d(v) + [(v, w) < d(w), the 
operation updates d(w) and n(w) in a natural way and 
sets S(w) to labeled. At the end of SCAN S(v) is set to 
scanned. 

4 Labeling Algorithms 
4.1 Bellman-Ford-Moore Algorithm 
The Bellman-Ford-Moore algorithm, due to Bellman [2], 
Ford [6], and Moore [18], maintains the set of labeled 
nodes in a FIFO queue. The next node to be scanned 
is removed from the head of the queue; a node that 
becomes labeled is added to the tail of the queue. Our 
code BF implements this algorithm. 

Performance of the Bellman-Ford-Moore algorithm 
is as follows. 

Theorem 4.1 The algorithm runs in O(nm) time in 
the worst case. 

Although the O(nm) worst case bound is the best 
bound known for shortest paths algorithms, in practice 
the Bellman-Ford-Moore algorithm is often slower than 
other methods. We introduce the following parent- 
checking heuristic: scan a node w only if its parent T(V) 
is not on the queue. The BFP algorithm is a variant of 
BF that uses this heuristic. One can easily prove the 
bounds of Theorem 4.1 for this algorithm. 

In practice, BFP seems never to make more scans 
than BF and is never significantly slower. In the vast 
majority of cases, BFP is faster than BF and the two 
codes differ by only one “if” statement. We use the BFP 
code in our experiments below. 

4.2 Dijkstra’s Algorithm Dijkstra’s algorithm [5] 
selects a labeled node with the minimum potential as 
the next node to be scanned. 

Theorem 4.2 If the length function is nonnegative, 
Dijkstra’s algorithm scans each node exactly once. 

Remark. It is easy to show that if negative arc 
lengths are allowed, the number of scans may be expo- 
nential. 

We first assume that arc lengths are nonnegative, 
and treat the other case at the end of this section. 
Also, when discussing below R-heap and bucket-based 
implementations of Dijkstra’s algorithm, we assume 
that the length function is integral. 

The worst-case complexity of Dijkstra’s algorithm 
on networks with nonnegative arc lengths depends on 
the way of finding the labeled node with the smallest 
distance label. A naive implementation that examines 
all labeled nodes to find the minimum runs in O(n2) 
time [5]. The implementation using k-ary heaps (see 
e.g. [3]) runs in O(mlogn) time (for a constant Ic). 
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The implementation using Fibonacci heaps [7] runs in 
O(m + nlogn) time. The implementation using one- 
level R-heaps [l] runs in O(m+n log C) time and the one 
using two-level R-heaps together with Fibonacci heaps, 
in O(m+nm) time. We evaluated implementations 
that use k-ary heaps with L set to 3 (DIKH), Fibonacci 
heaps (DIKF), and one-level R-heaps (DIKR). (Note 
that the R-heap data structure is based on buckets and 
thus similar to bucket-based implementations discussed 
below.) 

Another way to implement Dijkstra’s algorithm is 
by using the bucket data structure, as proposed by 
Dial [4]. This implementation maintains an array of 
buckets, with the i-th bucket containing all nodes v 
with d(v) = i. When distance label of a node changes, 
the node is removed from a bucket corresponding to its 
old distance label (if the label was finite) and inserted 
into the bucket corresponding to the new one. The 
implementation maintains an index L. Initially, L = 0, 
and L has the property that all buckets i < L are empty. 
The next node to be scanned is removed from bucket 
L or, if this bucket is empty, L is incremented. The 
following theorem follows easily from the observation 
that bucket deletions and insertions take linear time 
and at most nC buckets need to be examined by the 
algorithm. 

Theorem 4.3 [4] If the length function is nonnega- 
tive, Dial’s algorithm runs in O(m + nC) time. 

Although the algorithm, as stated, needs nC buck- 
ets, an observation that only C + 1 consecutive buckets 
can be occupied at any given time allows the use of 
C + 1 buckets. Our code DIKB implements Dial’s al- 
gorithm. We maintain nodes in a bucket in the FIFO 
order. Our implementation places a limit of 300000 on 
the maximum arc length (which determines the number 
of buckets). 

Next we introduce two simple ways to reduce the 
memory requirement of Dial’s algorithm. In the over- 
flow bag implementation, the number of buckets is set 
to B < C + 1. At the i-th stage of the algorithm, the 
buckets contain nodes with distance labels in the range 
[Bi, Bi + B - 11. The labeled nodes with distance label 
Bi + B and above are maintained in a special set (the 
bag). Initially i = 0 and B; = 0. When the value of L 
reaches Bi + B, the value of i is incremented and Bi is 
set to the minimum distance label of a node in the bag. 
Then the bag is scanned, nodes with distance labels in 
the range [Bi, Bi + B - l] are moved into appropriate 
buckets, and the next stage begins. The time-memory 
tradeoff of this implementation is as follows. 

Theorem 4.4 If the length function is nonnegative, 
the overflow bag implementation of Dijkstra’s algorithm 
runs in O(m + n((C/B) + B)) time. 
Choosing B = fi yields an O(m + nfi) time bound. 
Our code DIKBM implements this algorithm. We set 
B = min(50000, C/3). 

In the approximate bucket implementation, a bucket 
i contains nodes with distance labels in the range 
[iA, (i + 1)A - 11, w h ere A is a fixed parameter. Nodes 
in the bucket are processed in the FIFO order. This 
implementation needs [C/A] + 1 buckets. The time- 
memory tradeoff for this implementation is as follows. 

Theorem 4.5 If the length function is nonnegative, 
the approximate bucket implementation runs in O(mA + 
n(A + C/A)) time. 
Our code DIKBA implements this algorithm. We set 
A = [C/29 

The ideas of the above two algorithms can be 
combined to obtain the double bucket implementation 
of Dijkstra’s algorithm. This implementation has two 
kinds of buckets, high-level and low-level. The number 
of low-level buckets is A. A high-level bucket i contains 
the set of nodes with distance labels in the range 
[iA, (i + 1)A - l] except for the nonempty high-level 
bucket with the smallest index L. Nodes v with distance 
label in the range [LA, (L + 1)A - l] are in the low- 
level bucket d(v) - LA. After all low-level buckets are 
examined and the nodes in these buckets are scanned, 
L increases. If the corresponding high-level bucket is 
not empty, its nodes are moved to the corresponding 
low-level buckets and the next stage begins. 

The number of high-level buckets needed by this 
implementation is [(C + 1)/A]. The running time of 
the implementation is as follows. 

Theorem 4.6 If the length function is nonnegative, 
the double bucket implementation runs in O(m + n(A + 
C/A)) time. 
For the best theoretical bound, the value of A should 
be O(a). Our code DIKBD implements this algorithm. 
We set A to the biggest power of two that is less than 
dE. 

The double bucket implementation can be gener- 
alized to the k-level bucket implementation. The k- 
level bucket implementation requires O(kCl/“) buckets 
and runs in O(m + n(k + C’jk)) time. The details ap- 
pear in the full version of the paper. Setting k = 
12 log C/ log log Cl yields an O(m + n log C/ log log C) 
time bound. 

We conclude this section with a discussion of im- 
plementations of Dijkstra’s algorithm when arc lengths 
can be negative. A “strict” implementation of the algo- 
rithm selects a labeled node with the smallest distance 
label at every step. This is what our code DIKH does. 

An alternative is to maintain the value t of the 
biggest distance label of a node scanned so far, and 
to select a labeled node with the distance label of t 
or less if such a node exists and a labeled node with 
the smallest distance label otherwise. This strategy is 
more natural for bucket and R-heap implementations 
and we use it in the corresponding codes. If the nodes 
eligible for scanning are maintained in FIFO manner, 
one can show polynomial-time bounds for this variant 
of Dijkstra’s algorithm on networks with arbitrary arc 
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lengths. 

4.3 Incremental Graph Algorithms In this sec- 
tion we describe two algorithms. The first one was de- 
veloped independently by Pape [20] and Levit [17]. The 
second algorithm was proposed by Pallottino [19]. He 
also introduced the incremental graph framework that 
unified these two algorithms. Our implementations of 
the above algorithms are called PAPE and TWO-Q, re- 
spectively. 

Pape-Levit and Pallottino’s algorithms maintain 
the set of labeled nodes as two subsets, Si and Ss, the 
first containing labeled nodes which have been scanned 
at least once and the second containing those which have 
never been scanned. The next node to be scanned is 
selected from Si unless Si is empty, in which case the 
node is selected from Ss. We call Si the high-priority 
set and & the low-pm’ority set. 

The Pape-Levit algorithm maintains Si as a LIFO 
stack and Ss as a FIFO queue. (This algorithm is 
usually implemented using the dequeue data structure, 
which is a queue that allows insertions at either end. See 
e.g. [lo, 191.) This algorithm has exponential worst-case 
time bound. 

Theorem 4.7 [15, 211 The Pape-Levit algorithm runs 
in O(n2”) time in the worst case. 

Pallottino’s algorithm maintains Si and Sz using 
FIFO queues, Qi and Qz. 

Theorem 4.8 [19] Pallottino’s algorithm runs in 
O(n2m) time in the worst case. 

4.4 The Threshold Algorithm Glover et. al. [ll] 
suggest the following method, which combines the ideas 
lying behind the Bellman-Ford-Moore, Dijkstra’s, and 
incremental graph algorithms. (See also [lo, 121.) The 
method partitions the set of labeled nodes into two 
subsets, NOW and NEXT, which are maintained as 
FIFO queues. At the beginning of each iteration of the 
algorithm, NOW is empty. The method also maintains a 
threshold parameter t which is set to a weighted average 
of the minimum and average distance labels of the nodes 
in NEXT. During an iteration, the algorithm transfers 
nodes v with d(v) 5 t from NEXT to NOW and scans 
nodes in NOW. Nodes that become labeled during the 
iteration are added to NEXT. The algorithm terminates 
when NEXT is empty at the end of an iteration. 
Our code THRESH implements the threshold algorithm 
suggested in [ll] with parameter values MINWT = 45 
and WTCNG = 25. 

The running time of THRESH is as follows. 
Theorem 4.9 [12] If the length function is nonnega- 

tive, THRESH runs in O(nm) time. 

4.5 The Topological Ordering Algorithms Sup- 
pose nodes v and w are labeled and there is a path from 
v to w in the admissible graph containing a negative 
reduced cost arc. Then it is better to scan v before 
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w, since we know that d(w) is greater than the true 
distance from s to w. A recent algorithm of Goldberg 
and Radzik [14] is based on this idea. To simplify the 
algorithm description, we first assume that G has no 
cycles of length zero or less, and therefore for any d, the 
admissible graph Gd is acyclic. 

The Goldberg-Radzik algorithm maintains the set 
of labeled nodes in two sets, A and B. Each labeled 
node is in exactly one set. Initially A = 0 and B = {s}. 
At the beginning of each pass, the algorithm uses the 
set B to compute the set A of nodes to be scanned 
during the pass, and resets B to the empty set. A is 
a linearly ordered set. During the pass, elements are 
removed according to the ordering of A and scanned. 
The newly created labeled nodes are added to B. A pass 
ends when A becomes empty. The algorithm terminates 
when B is empty at the end of a pass. 

The algorithm computes A from B as follows. 
For every v E B that has no outgoing arc with 
negative reduced cost, delete v from B and mark it 
as scanned. 

Let A be the set of nodes reachable from B in Gd. 
Mark all nodes in A as labeled. 

Apply topological sort to order A so that for every 
pair of nodes v and w in A such that (v, w) E Gd, v 
precedes w and therefore v will be scanned before 
W. 
The algorithm achieves the same bound as the 

Bellman-Ford-Moore algorithm. 
Theorem 4.10 [14] The Goldberg-Radzik algorithm 

runs in O(nm) time. 
Now suppose G has cycles of zero or negative length. 

In this case Gd need not be acyclic. If, however, 
Gd has a negative length cycle, we can terminate the 
computation. If Gd has zero length cycles, we can 
contract such cycles and continue the computation. 
This can be easily done while maintaining the O(nm) 
time bound. (See e.g. [13].) 

Our code GOR is an implementation of the 
Goldberg-Radzik algorithm with one simplification. 
The implementation uses depth-first search to compute 
topological ordering of the admissible graph (see e.g. 
[3]). Instead of contracting zero length cycles, we sim- 
ply ignore the back arcs discovered during the depth- 
first search. The resulting topological order is in the 
admissible graph minus the ignored arcs. This change 
does not affect the algorithm correctness or the above 
running time bound. 

We also implement the following modification, 
~0~1, of GOR. Recall that we use depth-first search 
to compute the topological ordering. When an arc 
(v, w) is examined by the depth-first search, the arc is 
first scanned in the shortest-path sense, i.e., if d(v) + 
[(v, w) < d(w), 4 w > is set to d(e) + .!(v, w) and B(W) is 
set to v. (Note that this changes the admissible graph.) 
The following theorem gives a theoretical justification 
for this change. 
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Theorem 4.11 GORY runs in O(nm) time. On an 
acyclic network, ~0~1 terminates in one pass and therefore 
runs in O(m + TX) time. 

Remark. When counting the number of scans done 
by GOR and ~0~1, we count both the shortest paths 
SCAN operations and processing of nodes done by the 
depth-first searches. 

5 Experimental Setup 
Our experiments were conducted on SUN Spare-10 
workstation model 41 with a 40MHZ processor running 
SUN Unix version 4.1.3. The workstation had 160 Meg. 
memory. Our codes were written in C and compiled 
with the SUN cc compiler version 1.0 using the 04 
optimization option. 

Our implementations use the adjacency list repre- 
sentation of the input graph. We experimented with 
several folklore low-level representations of the graph 
and found that the one described in detail by Gallo and 
Pallottino [lo] is the most efficient. Our implementa- 
tions of the traditional algorithms (BF, PAPE, TWO-Q, 
THRESH) are also very similar to those described in [lo]. 
We attempted to make our implementations of differ- 
ent algorithms uniform to make the running time com- 
parisons more meaningful. We also tried to make the 
implementations efficient. 

The codes compared in our main experiments are 
BFP, GOR, ~0~1, DIKH, DIKBD, PAPE, TWO-Q, and 
THRESH. We do not include all the Dijkstra’s algorithm 
implementations because they often perform very sim- 
ilarly. We chose DIKH because it is the most widely 
known version of Dijkstra’s algorithm and DIKBD be- 
cause it is the best overall implementation of Dijkstra’s 
algorithm in our tests. We also compare DIKH, DIKBD, 
DIKR, DIKF, DIKB, DIKBM, and DIKBA on a subset of the 
problems that shows strengths and weaknesses of these 
codes. 

When tabulating results of our experiments, we give 
the running time in seconds (in bold) and the number 
of scan operations per node (below). The running 
time is the user CPU time and excludes the input and 
output times. To obtain a data point for a shortest 
paths code, we make five runs of the code on problems 
produced with the same generator parameters except 
for the pseudorandom generator seed. The data we 
tabulate is the average over the five runs. 

We place a 20 minute limit on the user CPU time 
of each computation on a problem instance. This leaves 
over 15 minutes for the shortest paths computation 
(excluding input and output). Since all problems in our 
tests are solvable in well under a minute by the code 
that is fastest for this problem, the codes that exceed 
the limit on a problem are losing to the fastest code by 
over an order of magnitude. 

Figure 1: Grid-SSquare family data. 

Figure 2: Grid-SSquare-S family data. 

6 Simple SPGRID Problems 
First we experiment with rectangular grid networks 
produced by our SPGRID generator. Nodes of these 
graphs correspond to points on the plane with integer 
coordinates [z, y], 1 5 z 5 X, 1 5 y 5 Y. These 
points are connected “forward” by arcs of the form 
([GY], [x + LY]), 1 5 x < X, 1 I Y 5 Y, “up” by 
arcs of the form ([z,y],[z,y + l(modY)]), 1 5 z I 
X, 1 5 y 2 Y, and “down” by arcs of the form 
([z,y],[z,y - l(modY)]), 15 z 5 X, 15 y 5 Y. Thus 
a layer, a set of nodes [x, y] with x fixed and 1 5 y 5 Y, 
is a doubly connected cycle. There is also an additional 
source node connected to all nodes in the first layer, i.e., 
the nodes with coordinates [l, y], 1 2 y 5 Y. For the 
rectangular grid experiments, arc lengths are selected 
uniformly at random from the interval [0, lOOOO]. 

6.1 Square Grids Figure 1 presents results of 
experiments on Grid-SSquare family of square grids. 
For this family X = Y. 

The best performance on this family is achieved by 
PAPE and TWO-Q. The performance of GOR, DIKBD, and 
THRESH is also good. These code lose to the best codes 
by less than a factor of 3. Somewhat slower is DIKH; it 
loses to the fastest codes by about a factor of four on 
the largest problem size. 

The worst performance on this family is that of BFP. 
The second-worst code is GORY. On the largest problem 
size, it is an order of magnitude slower than the fastest 
codes but an order of magnitude faster than the slowest 
code. 

When designing or implementing algorithms that 
use a shortest paths subroutine, it is often convenient 
to assume that all nodes of the network are reachable 
from the source. One way to assure this property is 
to introduce an artificial source and connect it to the 
original source by a zero length arc and to the other 
nodes of the graph by very long arcs. This is exactly 
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Figure 3: Grid-SWide family data. 

how we obtain the Grid-SSquare-S family from the Grid- 
SSquare family. 

Figure 2 shows the results of the Grid-SSquare-S 
experiment. The best codes in the first, experiment are 
the worst by a wide margin in the second experiment. 
In particular, PAPE is the only code that ran over time 
limit on the second largest problem size. In the second 
experiment,, TWO-Q performs much better than PAPE 
but much worse than the other codes. 

For larger problems, DIKBD is the fastest code in 
this experiment. 

6.2 Wide and Long Grids Next, we examine how 
the performance depends on the shape of the grid. 
We study two problem families, Grid-SWide and Grid- 
SLong. The grids in the first family have X = 16, i.e., 
the length of these grids is fixed and the width grows 
with the problem size. The grids in the second family 
have Y = 16 and their length grows with the problem 
size. 

The wide grids are easy for all algorithms, as one 
can see in Figure 3. The fastest codes for this problem 
family are PAPE and TWO-Q, and all other codes except 
DIKH are within a factor of 2 from the fastest codes. 
Even the slowest code, DIKH, loses by less than an order 
of magnitude. 

The situation changes on long grids, as can be seen 
in Figure 4. The most affected code is BFP, which is very 
good on wide grids but very bad on long grids, where it 
is the slowest code by a wide margin. The performance 
of DIKH is also affected significantly; its performance 
improves, especially on big problems. Other codes are 
less affected: their running times change by less than a 
factor of 4. 

7 Harder SPGRID Problems 
The SPGRID generator can also produce more compli- 
cated networks. These networks consist of layers and 
the source connected to the nodes of the first, layer. 
Each layer is a simple cycle plus a collection of arcs 
connecting randomly selected pairs of nodes on the cy- 
cle. The length of the arcs inside a layer is small and 
nonnegative. There are arcs from one layer to the next 
one, as in simple grids, but in addition, there are gener- 
ally arcs from lower to higher numbered layers. For the 
Grid-PHard problems the inter-layer arcs have nonneg- 
ative length, and for Grid-NHa.rd problems, nonpositive 
length. The length of these arcs is selected uniformly 
at random from a wide range of integers. Additionally, 
in the Grid-PHard problems the length of an arc from 
layer ~1 to layer zz is multiplied by (Q - ~1)‘. The 
Grid-PHard and Grid-NHard networks are significantly 
more complicated than simple grids. 

The computational results on the Grid-PHard fam- 
ily appear in Figure 5. Only four codes, GOR, ~0~1, 
DIKH, and DIKBD, solve all problems in this family 
within the time limit. The fastest code for this exper- 
iment is DIKBD, with DIKH close behind, losing by less 
than a factor of 2. In this test PAPE has the worst per- 
formance. In the set time, it is able to solve problems 
of the two smallest, sizes only, losing to the best code by 
three orders of magnitude. 

Figure 6 gives results of the Grid-NHard experi- 
ment,. On this problem family, GORY and GOR are by 
far the best codes. 

Although the performance of BFP, PAPE, and 
TWO-Q codes is not exactly the same in this experiment 
as in the previous one, it is quite similar. Much worse 
performance is exhibited by THRESH, DIKBD, and DIKH. 
The latter code is the worst,, exceeding the time limit 
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I, I" BFP OOR OORl LMKH DlKBD PAP6 TWO9 THRESH 
8192 o.sa 0.90 o.ae 

32708 12.23 14.58 10.02 
10384 I.10 1.00 0.01 65536 13.45 10.10 11.72 
32768 9.41 2.00 2.68 131072 13.73 10.4, 12.00 
(i5530 fJ.s, 8.03 7.08 202144 15.51 18.21 13.29 

131072 23.20 IO.04 15.81 524288 10.75 IO.48 14.15 

ilfl~~~~‘~~~ 

252144 61.38 42.74 39.81 13.15 4.78 64.75 e1.38 40.45 
1048576 17&l 20.76 14.62 1.00 1.00 27.80 26.05 10.02 

524288 100.58 .30..36 71.68 20.28 10.11 118.04 x34.44 80.60 
200,152 18.19 21.02 15.02 1 .oo 1.00 28.01 28.41 10.03 

Figure 9: Rand-Len family data. All problems have 131072 
1048576 256.83 104.31 145.64 OS.27 21.08 267.51 302.,8 188.29 nodes and 524288 arcs. 
4184304 ID.12 22.40 15.18 1.00 1 .oo 31.23 SO.,0 IO.55 , 

Figure 7: Rand-4 family data. 
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Figure 8: Rand-l:4 family data. 
10.75 10.53 14.15 35.03 31.40 27.31 25.07 27.88 

on all test problems. 

Figure 10: Rand-P family data. All problems have 131072 
nodes and 524288 arcs. 

8 Experiments with SPRAND Families 
In this section we study performance of the codes on 
graphs produced by the SPRAND generator. All graphs 
we consider are constructed by creating a hamiltonian 
cycle and then adding arcs with distinct random end 
points. In our experiments we set the length of the 
arcs on the cycle to 1 and pick the lengths of other 
arcs uniformly at random from a certain interval. For 
all problem families except Rand-Len, this interval is 
[O, 10000]. 

Note that if we were to pick the cycle arcs lengths 
in the same ways as the other arc lengths, the resulting 
graphs would be essentially random. We found, how- 
ever, that the resulting problems are easy for all the 
codes. Setting the cycle arc lengths to 1 makes the 
problems more interesting and the experiments more 
insightful. 

8.1 Sparse and Dense Networks The graphs in 
Rand-4 family have m = 4n. As one can see in Figure 
7, the Dijkstra’s codes are the best on these problems, 
with DIKBD clearly the fastest code and DIKH slower 
by a factor of about 2 for the smaller problems and a 
factor of about 3 for the bigger problems. Other codes 
are noticeably slower, with TWO-Q and PAPE being the 
slowest. 

The graphs in Rand-l:4 family have m = n2/4. As 
one can see in Figure 8, there is little difference in rela- 
tive performance of the codes, except DIKH improves rel- 
ative to DIKBD and becomes the fastest code, although 
DIKBD is only slightly slower. 

8.2 Dependency on Arc Lengths Problems in the 
Rand-Len family are the same except for the interval 

from which the arc lengths are selected. The arc length 
is fixed to 1 for the first problem in the family and 
selected from an interval [0, U] for the other problems. 
See Figure 9. Note that because the cycle arcs’ lengths 
are set to 1, the structure of the shortest paths tree 
changes as U increases. For bigger values of U, the 
cycle arcs are more likely to be in the tree and the tree 
is likely to be taller. 

On the unit length problems, BFP, DIKH, DIKBD, 
PAPE, TWO-Q, and THRESH make one scan per node. 
The running times of BFP, PAPE, and TWO-Q are the 
fastest (and almost the same). The worst code, ~0~1, 
loses by about a factor of 5. 

As the length range expands, the algorithms become 
slower. DIKBD shows very little dependence on the arc 
length range and is the fastest except for the unit length 
case. The performance of GORY and DIKH is also affected 
very little. Other codes are significantly affected; their 
performance decreases by over an order of magnitude 
for the [0, lOOOOOO] length range (compared to the unit 
length case). 

8.3 Node Potentials Problems in the Rand-P fam- 
ily are the same except the length function L is modified 
by assigning each node o a potential p(v) chosen uni- 
formly at random from the interval [0, P] and replacing 
C by $. (For P = 0, the problems are the same as the 
131072 node problems of the Rand-4 family.) While C is 
nonnegative, .$, can take on negative values. However, 
for small P, the expected fraction of negative length 
arcs is small. 

Note that BFP, ~0~1, PAPE, and TWO-Q make the 
same number of scans regardless of the potentials. This 
observation is justified by Theorem 11.1. 
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Figure 11: Acyc-Pos family data. 

9 Experiments with SPACYC Families 
In this section we study performance of the codes on 
acyclic networks. The shortest paths problem on an 
acyclic graph can be solved in linear time (see e.g. [3]) 
and the experiments of this section include the linear 
time algorithm for acyclic graphs, ACC. 

Experiments with acyclic graphs are interesting for 
several reasons. Shortest paths problems in acyclic 
graphs come up in applications, such as PERT net- 
work analysis (see e.g. [16]). Furthermore, some net- 
works that come up in applications have large acyclic 
subgraphs (e.g. electric networks) and an algorithm 
that behaves poorly on acyclic networks is likely to be- 
have poorly on networks with large acyclic subgraphs. 
Acyclic networks are also easy to use in certain experi- 
ments because negative length cycles are not a problem 
for these networks. 

The networks used in the experiments of this section 
are generated as follows. The nodes are numbered from 
1 to n, and there is a path of arcs (i,i + l), 1 5 i < n. 
These arcs are called the path arcs. Additional arcs are 
generated by picking two distinct nodes at random and 
creating an arc from the lower to the higher numbered 
node. The lengths of the additional arcs are selected 
uniformly at random from the interval [L, U]. 

9.1 Positive Arc Length For the Acyc-Pos family, 
the path arcs’ length is set to 1 and the other arc lengths 
are selected from the interval [0, lOOOO]. The unit, length 
of the path arcs makes these problems more difficult 
for some of the codes. Figure 11 shows how the codes 
perform on this problem family. 

The fastest codes for this family are DIKBD and 
ACC. These codes perform similarly, but the former 
is a little faster on bigger problems, in spite of the 
fact that ACC is especially designed for acyclic graphs. 
These two algorithms make the same number of scans; 
the additional overhead of ACC is a topological sort 
of the graph and the additional overhead of DIKBD is 
in maintaining the bucket data structure. The latter 
overhead is smaller than the former for large Acyc-Pos 
problems. 

The slowest codes for this family are GOR, PAPE, 
and TWO-Q. 

9.2 Negative Arc Length For the Acyc-Neg family, 
the path arc length is set to -1 and the other arc lengths 

Figure 12: Acyc-Neg family data. Within the time limit, 
DIKH solves only the smallest problems; the average time is 
1047.35 seconds and the average number OS scans per node 
is 9037.71. 

Figure 13: Performance of Dijkstra’s implementations on 
Grid-SWide problems. 

are selected uniformly at random from the interval 
[-10000,0]. Figure 12 shows how the codes perform 
on this problem family. 

In this experiment, ACC and GORY perform similarly 
to the previous experiment, and GOR performs better 
than in the previous experiment, matching ~0~1. 

All other codes perform worse by a very wide 
margin. 

10 Experiments With Variations of Dijkstra’s 
Algorithm 

The above experiments involve two implementations of 
Dijkstra’s algorithm, the “classical” k-ary heap imple- 
mentation DIKH and our double bucket implementation 
DIKBD. In this section we compare these implemen- 
tations with several other implementations on prob- 
lem families Grid-SWide, Grid-SLong, Grid-SSquare-S, 
Grid-PHard, and Rand-Len. The problem families are 
chosen to emphasize differences in the codes’ perfor- 
mance. The additional implementations we evaluate are 
the R-heap implementation DIKR, the Fibonacci heap 
implementation DIKF, Dial’s implementation DIKB, the 
overflow bag implementation DIKM, and the approxi- 
mate bucket implementation DIKBA. 

Figure 13 presents data for the Grid-SWide family. 
Here DIKBA performs best, with DIKB, DIKBD, and 
DIKBM close behind. Note that DIKBA makes only one 
scan per node on these problems. The slowest code in 
this test is DIKF. 

Figure 14 presents data for the Grid-SLong family. 
On this family, DIKH and DIKBD are the fastest codes. 
DIKB and DIKBM are significantly slower. 
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n/m LVK" DlKP DIKR DlKB DlKBM DIKBA DlKBD 
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49152 1.99 1.96 1.09 1 .oll 
32769 0.2s 0.42 0.97 1.47 
98304 1.99 1.60 1.99 1.69 
65537 0.48 0.90 0.76 2.96 . 

196608 1.00 1.00 1.69 1.ocJ 

~~~ ~~ 

131673 0.9, 1.80 1.49 8.06 . . 

303216 1.69 1.66 1.06 1.69 

262145 1.9s 9.86 2.9s 11.99 10.62 2.93 l.S2 
786432 1.60 1 .oo 1.60 1.00 1.90 1.6ll 1 .cm 
524269 9.86 -7.48 6.96 23.67 21.03 4.68 S.BB 17: Performance of on 1572864 1.99 1.66 1.99 1.66 1.66 1.90 1.99 Figure Dijkstra’s implementations 

Rand-Len problems. For the largest length interval, DIKB 

Figure 14: Performance of Dijkstra’s implementations on requires too many buckets and does not run. 

Grid-SLong problems. 

65.88 46.60 21.62 129.90 12.88 12.m 

Figure 15: Performance of Dijkstra’s implementations on 
Grid-SSquare-S problems. 

Figure 15 presents data for the Grid-SSquare-S fam- 
ily. Here DIKBA performs best and DIKBD is somewhat 
worse on smaller problems but catches up with DIKBA 
on the larger problems. The code DIKR is somewhat 
slower; DIKF and DIKH are significantly slower than the 
fastest codes, and DIKBM is slower than DIKH. 

Figure 16 presents data for the Grid-PHard family. 
Here DIKR performs best, with DIKBD a very close 
second. Another code that does very well on these 
problems is DIKBM. The performance of DIKH and 
DIKF is reasonably good, and these codes perform very 
similarly. The worst code, DIKBA, loses to the best by 
about a factor of 3. 

Figure 17 presents data for the Rand-Len family. 
On problems with small lengths, DIKB, DIKBA, and 
DIKBD are the fastest codes and on problems with big 
lengths, DIKBM is the fastest. However, the difference 
among all these codes is small, except that DIKB exceeds 
its limit on the number of buckets and does not run 
on the problems with the biggest arc length range. 
Somewhat slower than the fastest codes is DIKH. The 
code DIKF is the slowest except on the problem with the 

biggest arc lengths, where it is the second slowest, 

11 Discussion 
Our experimental data motivated an interesting theo- 
retical discovery which we describe next. We say that 
two instances of the shortest path problem are eqzliv- 
dent if the underlying networks, including their repre- 
sentations, are identical and the two length functions, I’ 
and C”, satisfy ei = C” for some potential function d. (If 
networks are given in the adjacency list representations, 
identical representations have the corresponding nodes 
and arcs appearing in the same order.) A labeling short- 
est paths algorithm is potential-invariant if it performs 
the same sequence of node scans on two equivalent prob- 
lem instances. Figure 10 shows that GOR, DIKH, DIKBD, 
and THRESH algorithms are not potential-invariant. 

Theorem 11.1 Algorithms BF, BFP, ~0~1, PAPE, 
and TWO-Q are potential-invariant. 

Theorem 11.1 is powerful and useful. For exam- 
ple, the theorem shows that no heuristic for computing 
a “good” initial potential function can improve perfor- 
mance of a potential-invariant algorithm such as BF. 
Note that any feasible shortest paths problem has an 
equivalent one with nonnegative arc lengths. If the 
problem with nonnegative arc lengths is computation- 
ally simpler than the general problem, the theorem sug- 
gests that a potential-invariant algorithm cannot be su- 
perior to all other algorithms on problems with nonneg- 
ative arc lengths. 

12 Concluding Remarks 
Our study does not produce a single best code for all 
classes of shortest paths problems. We can, however, 
suggest two algorithms, one for networks with negative 

Figure 16: Performance of Dijkstra’s impleme 
Grid-PHard problems. 

arcs and one for networks without negative arcs. These 
algorithms may not be the best on a particular problem 
class, but their running time is likely to be of the same 
order of magnitude as that of the fastest algorithm and 
often will be much closer. 

For problems with nonnegative arc lengths, Dijk- 
stra’s algorithm is robust and an appropriate implemen- 
tation of this algorithm is usually quite competitive. In 
our tests, the double bucket implementation, DIKBD, is 

mntations on the best overall. This implementation also seems to 
work reasonably well if the network has a small number 
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of negative length arcs. For problems with many neg- 
ative length arcs, GORY appears to be a good choice. 
This code also works well on graphs that have large 
node-induced acyclic subgraphs. 

In practice, problems often have a very specific 
structure, and algorithms that can take advantage of 
this structure may perform very well. For example, 
practical problems are often quite “metric” and incre- 
mental graph algorithms may work well on these prob- 
lems. Our experiments suggest, however, that extra 
care is needed if one decides to use these algorithms 
because small changes (such as addition of an artificial 
source) may drastically decrease performance of these 
algorithms. Our experiments give strong evidence that 
TWO-Q is more robust than PAPE and is a safer choice 
in practice. 

The relatively good performance of the R-heap 
and the double-bucket implementations compared to 
the k-ary heap and bucket implementations, respec- 
tively, show that sophisticated data structures may be 
worth implementing. On the other hand, the relatively 
poor performance of the Fibonacci heap implementation 
compared to the k-ary heap implementation shows that 
a sophisticated data structure with a better theoretical 
worst-case bound is not necessarily better in practice. 

We implemented a scaling algorithm of [13]. Perfor- 
mance of our implementation was not especially good, 
but a better implementation may be possible. 

We experimented with networks without negative 
cycles. An interesting question is which algorithms are 
best at detecting a negative cycle if there is one. 

Code Availability 

The codes of our implementations and generators, 
the generator inputs used in our experiments, and 
a description of our network representation for- 
mat are available via a mail server. To ob- 
tain the codes and the other data, send mail to 
ftp-request@theory.stanford.edu and put send 
splib. tar as the subject line. The reply will contain 
a uuencoded tar file with the codes, generator inputs, 
and documentation. 
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