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An O(EI’ log2 V) algorithm for finding the maximal flow in networks is described. It 
is asymptotically better than the other known algorithms if E = 0( P-c) for some c > 0. 
The analysis of the running time exploits the discovery of a phenomenon similar to (but 
more general than) path compression, although the “union find” algorithm is not used. 
The time bound is shown to be tight in terms of I’ and E by exhibiting a family of net- 
works that require B(EV logSI’) time.’ 

One of the well-known problems in combinatorial optimization is the problem of 
finding a maximum flow in a given network. Table 1 summarizes the history of the prob- 
lem. For more details see [9]. All the bounds in Table 1 have been shown to be tight in 
[l I], where a family of networks was constructed so that for every V and E, V < E < V2, 
a network with approximately V vertices and E edges belongs to the family and requires 
the time (or space) which appears in the column of Table 1 by the corresponding algori- 
rithm. This family of “bad” networks is derived from one parametrized network. 

TABLE 1 

Solutions Time Space 
_---_--- 

Ford and Fulkerson (1956) [6, 71 E 
Edmonds and Karp (1969) [5] E2V E 
Dinic (I 970) [4] EP E 
Karzanov (1973) [13] V’3 VZ 
Malhotra et al. (1978) [14] V3 E 
Cherkasky (I 976) [3] V*(E)l/* E 
Galil (1978) [9] JPPEV E 
The new algorithm EV log2 V E 

* The first author was supported in part by the Israel Commission for Basic Research. 
1 We use V [E] for the set of vertices [edges] and for its size. Unless specified otherwise, logarithms 

are of base 2. 
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In this paper we present another algorithm for the max-flow problem. As is seen in 
Table 1 many of the algorithms take time 0( V3) when E = V2, while the new algorithm 
takes time 0( V3 log2 V). But the latter is asymptotically superior whenever E = 0( V2+) 
for any E > 0. In particular it is best for sparse networks (E = O(V)). Unlike some of 
the recent algorithms (e.g., Galil’s or Cherasky’s) the algorithm is quite silple. In order 
to understand it one need only know Dinic’s algorithm. In fact it can be viewed as an 
efficient implementation of Dinic’s algorithm. 

Since the algorithm is based on Dinic’s algorithm we will first explain Dinic’s algorithm. 
Then we will present our algorithm. Correctness proof will be trivial, but the analysis 
of the running time will turn out to be quite involved. The most interesting part of 
this paper is the analysis of the running time of the algorithm. We have discovered a 
phenomenon similar to the path compression of the “union find” algorithm. This is 
surprising because no use is made of this algorithm even in an indirect way. Our initial 
attempts to come up with a reduction to the “union find” algorithm have failed. The 
reason for that was that the phenomenon mentioned above is more general. 

We state a Combinatorial Lemma which implies as corollaries the time bound for our 
algorithm, and the known time bound for the “union find” algorithm without balancing 
but with path compression. 

We then show that the time bound O(EVlog2 V) is tight. The “bad” netoworks of 
[l I] are not bad enough for the new algorithm and require only Q(EV log V). We 
construct another family of networks that force the algorithm to run in time proportional 
to EV log2 V for V and V < E < V2. This family is derived from one parametrized 
network. (So for every such V and E the parameters can be fixed so that the numbers of 
vertices and edges are V and E, resp.) In the last section we consider the special case of 
planar networks. 

Originally we came up with a slightly different algorithm [lo]. Both versions may be 
considered as two implementations of the same basic idea. The algorithm described here 
is conceptually simpler. The original version is probably practically (but not asymptoti- 
cally) better and we describe it in Appendix 1. A direct proof for the running time of a 
version very similar to our earlier version was discovered by Shiloach [16]. 

THE PROBLEM AND THE SUBPROBLEM 

A network is a directed graph G = (V, E) with two distinguished vertices s and t, and a 
positive real number c(e); the capacity of e is associated with every edge e. Given a net- 
work, a flow is a real valued function) E-j R satisfying 

(1) 0 <j(e) < c(e) for every e in E; and 

(2) Lie) f(e) = Ceomu) f(e) for every 0, a f s, t, where 

in(o) [out(w)] is the set of edges that enter [leave] n. 
Given a flow f, the walue of the flow is Cseout(s) f(e) - Ceoints) f(e). The max-flow 

problem is: Given a network, find a flow with maximal value. 



ALGORITHM FOR MAXIMAL FLOW 205 

All the algorithms mentioned in Table 1 with the exception of the first two use Dinic’s 
approach by solving at most V instances of a sub-problem defined below. In fact this 
sub-problem can be found “hiding” also in the second solution. 

A layered network is a network, the vertices of which are partitioned into layers I’,, = 
(4, VI ,..., v, = It>, with edges going only from one layer to the next layer. Given a 
flow f, an edge e is saturated if f (e) = c(e); the flow is blocking if every directed path from 
s to t contains a saturated edge. The sub-problem (which is a phase in Dinic’s algorithm) 
is: Given a layered network, find a blocking flow. 

The new algorithm solves the sub-problem in time O(E log2 I’), and thus it solves the 
problem in time O(EV log2 V). 

DINIC'S ALGORITHM AND THE NEW ALGORITHM 

Dinic’s algorithm performs a depth first search on the layered network. Each time we 
hit t a path from s to t is found and the maximum amount of flow is pushed through this 
path. All saturated edges (and there is at least one) are deleted and the search resumes from 
the tail of the deleted saturated edge closest to s. If we hit a dead-end, we delete the last 
edge, backtrack to its tail and continue on from it. We terminate when s becomes a dead- 
end (out(s) becomes empty). 

The time bound is obviously O(E + nk) where 71 is the number of paths found (recall 
that k is the length of the layered network) which is bounded by 0( I%) (k < V, n < E). 
In Fig. 1, assume that a path has been found and that the two marked edges are deleted. 
The search resumes at the vertex u. Dinic’s algorithm “forgets” most of the information 
obtained in the previous searches. The fact that the part of the path from Al to t has been 
traversed is not recorded and possibly big parts of this path will later be “rediscovered.” 

The new algorithm remembers the paths that are generated after deleting saturated 
edges ((or and 01~ in fig. 1). We call them path fragments or PF’s in short. 

The main difficulty with this notion is the possibility that during the construction of a 
path we may break into a PF in the middle (Fig. 2). Then we will have to split that PF 
and concatenate its head to the path which we construct (which itself is a PF). 

We now describe the algorithm ignoring some details of implementation that are 
included in the next section. The path constructed every minute is a PF which is denoted 
by PF,, . The vertex u points always to the last vertex of PF, . The asterisk * will stand 
for the obvious adjustment of u in each case. At any moment there will be at most one PF 
going through or starting at any vertex o. (There may be several PF’s ending at v.) The 
edge in that PF which belongs to out(v) will be the first edge in out(v) that has not been 

FIGURE 1 
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a b c 

FIG. 2. (a) breaking into a PF a; (b) splitting LX; (c) concatenating a”, the head of 0~. 

deleted. We use an auxiliary PF, denoted by PF, , which is always concatenated to PF, . 

1. u+-s; PFs+-empty 

2. repeat 3-8 until s is a dead-end 

3. if u is a dead-end delete last edge of PF * 
otherwise 

4. if there is no PF going through u let PF, be the first edge in out(u) 

5. else if there is a PF that starts at u let PF, be that PF 

6. otherwise--u is in the middle of a PF (Fig. 2)-split it and let PF, be 
its head 

7. concatenate PF to PF * 

8. if u = t (Fig. 1) push flow, repeatedly split PF,, at saturated edges 
and delete them, PF, t PF that starts at s * 

THE DATA STRUCTURE 

Each path fragment is implemented by a 2-3 tree [l]. The ordered leaves of the (tree 
corresponding to a) PF correspond to the edges of the PF. So, a nodes n in the tree 
corresponds to a path a(n) in the network: a(n) consists of the edges corresponding to 
the leaves of the subtree rooted at 1~. With each node 12 we associate two fieldsf(n) (flow) 
and c(n) (capacity). f(n) is the flow pushed in the corresponding path that has not been 
added to the subtrees. Consequently, if an edge e is in a PF, thenf(e) = Cf(m), where 
the sum is over nodes m on the path from the leaf corresponding to e to the root. This is a 
different way to implement the idea of big edges introduced in [9]. (Big edges stand for 
paths and were used to send flow directly as long as no (small) edge on the path became 
saturated.) c(n) is the minimal residual capacity (i.e., capacity minus flow) of an edge on 
the path corresponding to 71 ignoring flows associated with proper ancestors of 71. Thus 

44 = ey$j 44 - where CL(~) is as above and p(n, e) 

is the path from the leaf corresponding to e to n. Whenever we consider the capacity 
field of a node n, either n is a root of a PF, or all its proper ancestors have flow fields zero. 

2 We refer to a node in the tree that represents a PF, and to a vertex in the layered network. 
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In both cases c(n) is the minimal residual capacity of an edge in a(n). In particular c(n) = 0 
exactly when there is a saturated edge in a(n). 

It follows from the definitions that c(n) = min c(nJ -f(n), where the ni’s are the sons 
of n. Consequently, except for leaves we do not need the flow field (f(n) = min c(nJ - 
c(n)). We will not use this observation in the sequel. 

We sometimes transfer $0~0 from a node n to its sons ni . This is achieved by (c(n,), 
f(4) + (44 -f(n), fb.4 + f(n)> and (44 f(n)) + (44, 0). 

The operations which we perform on PF’s are concatenate, split, and delete edges. 
The corresponding known operations on 2-3 trees [l] can be easily modified to support 
each one of these operations in time O(log V). The modifications (given below) are needed 
to update the two fields associated with each node. 

Assume we concatenate PF, to PF,, and (the tree corresponding to) PF, has larger height. 
The root of PF, becomes a son of a node n on the path from the root of PF, to the leaf 
corresponding to its last edge. But the proper ancestors of n in PF,, may have flows 
associated with them. These flows have to be eneventually added to the edges of PF,, , 
but have nothing to do with the edges of PF, . So, when we go down the tree in the search 
for n we transfer the flows of the nodes on the path to their sons. The case that the tree 
PF, has larger height is analogous. 

When we split a PF at a certain leaf we first have to go along the path from the root to 
this leaf and transfer flows of the nodes on the path to their sons. When we delete the last 
edge of a PF we first have to go up the tree and compute its flow, and update c(n) on the 
way. 

For every vertex ‘u we have a pointer, which (if defined) points to the unique leaf (in a 
PF) corresponding to (the currently first) edge in out(v). Consequently, the if’s asked in 
steps 4, 5, 6 can be easily answered. 

Pushing flow in step 8 is performed by (c(r), f(r)) + (0, f(r) + c(r)), where r is the root 
of PF, . Locating saturated edges is achieved by going down the tree and transferring 
flow of a node to its sons for all nodes with (new) capacity field zero. Exactly all ancestors 
of leaves corresponding to saturated edges are visited and in the end all leaves with capa- 
city field zero represent the saturated edges. 

To make the algorithm complete we need to add at its end another step that transfers 
all flows of nodes in the remaining PF’s down the trees. This is needed so that edges that 
have not been deleted will have the correct flow, and it can be achieved by deleting all 
these edges. 

THE ANALYSIS OF THE RUNNING TIME 

In computing the running time we can ignore the time needed to answer the if’s in 
steps 4, 5, 6 because it is subsumed by the O(log V) needed for the following concatena- 
tion. We can also ignore the O(log V) time per locating a saturated edge because it is 
subsumed by the O(log V) needed to delete it. Consequently, the time bound is propor- 
tional to log V times the number of operations on PF’s in step 3, 6, 7, and 8. 

The total time needed to delete edges is O(E log V) b ecause we delete at most E edges. 
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a b 

FIG. 3. Before and after the construction of the path. 

Let K be the number of times we enter into another PF in the construction of PF, 
(either splitting it as in step 6 or entering into its first vertex as in step 5). The number of 
times we concatenate PF’s is at most K + E. (The term E is due to step 4.) The number of 
times we split a PF is at most K + E. (The term E is due to step 8.) Consequently, the 
order of the time bound is E log V + K log V. We will show that K = O(E log V). This 
will imply that the time bound for the sub-problem is O(E log2 Ir) and for the max-flow 
problem is O(EV log2 V). 

Figure 3 above describes part of a search for a path. It is quite possible that during the 
construction of one path we will enter many new PF’s on the way (as many as k) but while 
PF, , PF, , PF3 were at “distance” m, m - 1, m - 2, resp. from a “main highway” 
before the construction of the path, all will be at distance one after the construction. (A 
“main highway” is either a PF that enters t or a PF that enters a dead end. The “distance” 
is the number of PF’s changed on the way.) This is exactly what happens in path com- 
pression in the “union find” algorithm: the various nodes on the way are at distances m, 
m - 1, m - 2 ... from the root but all become attached to the root. Viewed differently, 
this phenomenon means that while occasionally we may have to spend a long time, this 
time is not completely wasted because it is a sort of investment for the future. 

THE COMBINATORIAL LEMMA. Consider a process that modi$es a set of pairs S, 

S _C {( p, q)j 1 < p < q < N}. Initially the set need not be empty but it contains at most one 
pair ( p, q) for every p. The process consists of M stages. During a stage some pairs may leave 
S and at its end some pairs may enter S. The leaving pairs constitute a chain ((p, , p,), 
(pz ,pJ ...). Anenteringpair(p, ) r must satisfy (1) no pair ( p, q) is currently in S, and (2) 
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if ( p, q) was in S and left in the same stage as ( p’, q’), then r > q’. Under these conditions 
the number of pairs that left 5’ is O((M + N)log(M + N)/log([(M + N)/N)]). 

The proof of the Lemma is identical to the direct proof of Corollaty 1 below given in 
[17]. (Tarjan attributes the result to Paterson [15].) The conditions of the lemma are 
sufficient for the proof to go through. In fact the condition that the leaving pairs must 
constitute a chain can be weakened. For completeness we give the proof of the Lemma in 
Appendix 2. 

COROLLARY 1. The time of the “union find” with path compression (without balancing) 
with m$nds and rz elenzents is O((m + n)log(m + n)/log([(m + n)/n)l). 

Proof. Perform all unions first and consider partial finds [17] on the resulting tree. 
Number the nodes of the tree so that a node has a number larger than the numbers of 
its sons. The set S of pairs consists of the edges of the tree. The stages are the finds. 
The second condition on an entering pair follows from the fact that the partial finds are 
derived from finds, i.e., we need always go up to the root at the time of the find. 1 

COROLLARY 2 (or Theorem 1). The time bound of OUY algorithm is O(EV log2 V). 

Proof. First let us number the PF’s. PFO--the path we construct-does not have a 
number. The only case where PF’s get new numbers is immediately after deleting satu- 
rated edges and splitting PF,,: Consider Fig. 1. If N,, is the last number given to a PF, then 
01~ and 01~ are given the numbers N,, , 1 1 and N,, + 2, respectively. (a is not given a 
number because it becomes the new PF,, .) It follows that N < E, where AJ is the last 
number given to a PF. PF’s may change: if the case described in Fig. 2 occurs, then CL’ 
gets the number of 01. (01” does not need a number because it is concatenated to PF,, .) 

PF number p points at PF number q if the former ends in a vertex that belongs to the 
latter but is not its last vertex. For example, PF, points at PF,,, in Fig. 3. 

Fact. If PF number p points at PF number q at a certain moment but not at a previous 
moment, then the latter is a new PF (i.e., the number q has just been given). 

We now show that the conditions of the Lemma hold. Let S = {( p, q)l PF number p 
points at PF number q}. By the Fact, 1 < p < q Q N. The process that changes S is our 
algorithm. A stage starts each time we visit an edge for the first time (step 4). Thus the 
number of stages M < E. That the leaving pairs constitute a chain follows from Fig. 3. 
(PF, pointed at PF,,, at the beginning of the stage but not at its end.) The first condition 
on entering pairs is obvious. (No two PF’s can go through the same vertex.) The second 
condition follows from the Fact. Since M, N < E it follows from the conclusion of the 
Lemma that the number of pairs that left S is O((M + N)log(M + N)/log([(M + N)/ 
N]) = O((M + N)log(M + N)) = O(E log V). But it follows from Fig. 3 that except 
for the first time in a stage, whenever we enter another PF in the construction of PF, 
at least one pair leaves S. Thus K, the total number of times we enter another PF, is 
bounded above by E + the number of pairs that left S = O(E log V). 1 
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EXAMPLJS REQUIRING Q(E Hog2 V) TIME 

In this section we show that the upper bound that we derived in the previous section is 
tight. Given V and E, V < E < V2, we construct a network with O(V) vertices and O(E) 
edges that forces the algorithm to run Q(EV log2 V) steps. 

Assume that part of the layered network is the tree described in Fig. 4. Each arc in the 
tree is a simple path of length r, where r is a parameter that will be determined later. 

Assume that when a path constructed passes through V, for the ith time it enters the 
tree in leaf number i mod 8. It is easy to see that after the eighth visit the complete tree 
has been visited and in any following visit three PF’s will be split (in step 6). Each of these 
splits will cost log r because each PF has length of at least r. 

The tree in Fig. 4 is denoted by Ts,r because it has “depth” 3. One can similarly define 
the tree Td,r with 2d leaves and number them in such a way that after each leaf is visited 
once, every path will cost - d log r because there will be d splits of PF’s of length at 
least r. 

The layered network that arises in our examples is described in Fig. 5. It consists of 
one copy of Td,r with d = [log W2] and r = [W21, and a complete bipartite graph 
with sides pr and p2 that contain E1j2 vertices each. The two edges that are incident 
with s and 2 stand for two simple paths of length 0(V). The only difference distinguishing 
the layered networks arising in the different phases will be that these two paths will 
become longer. The end vertex of the path starting at s is connected to all the vertices of 
v1 and the ith vertex in p2 is connected only to leaf number i mod 2a of Tdsr. Without 
loss of generality the number of leaves 2d (< l~‘l/~) divides E112. (Otherwise we take fewer 
vertices in p1 and p2 .) 

The edges in the bipartite graph have capacity one and are called bottlenecks. Some 
edges on the two paths mentioned above will have finite but large capacity and wiI1 not 
become saturated during the phase. (Two will become saturated at the end of the phase.) 
All the other edges have infinite capacity. 

One can easily verify that the numbers of vertices and edges in this layered network are 
O(V) and O(E), respectively. Also, it is quite clear that there are E successful paths which 
saturate the E bottlenecks, and the ith path goes through leaf number i mod 2d of Td,r. 
(Note that the order according to which the edges in out(n) are arranged, for each vertex v, 
is important.) Consequently, the time required per phase is - Ed log E = Q(E log2 V). 

Vp+3r 

Vp*2r 

Vp+r 

VP 
0 42 61 5 3 7 

FIG. 4. T,., . 
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FIG. 5. The layered network. 

211 

5 

FIGURE 6 



212 GALIL AND NAAMAD 

The parametrized network that requires s2(EV log2V) time by our algorithm is given 
in Fig. 6. It contains two copies of Td,T (with d and Y as above), and a complete bipartite 
graph with sides S, and S, of size E1/2. Each side is connected to the leaves of the corre- 
sponding copy of Td,? in the same way Fa was connected above to the leaves of 
T d.T * 

The mechanism used to force the “bad” layered network of Fig. 5 to repeat in Q(V) 
phases is similar to the one used in [l 1] for similar purposes. Therefore we omit some of 
the details (e.g., the exact constants mentioned below). The network contains four similar 
sections PI , Pz , Q1 , Qs . Each section contains V units. A unit has a short part and a long 
part. Both are simple paths of different constant length. In the short part there is an edge 
called the bottleneck of the unit. The bottleneck of unit number i has capacity iE. The 
bottlenecks (the edges in the bipartite graph) have capacity one. All other edges have 
infinite capacity. The only difference between the sections is that Pz and Qs have in addi- 
tion to the V units also an additional simple path of constant length. The end vertex of 
PI [PJ is connected to all vertices of S, [Sal. 

In the first phase the layered network will contain the short parts of the units in PI 
and Q1. T& S, and S’s will play the role of T,,, pi and pa. A path from Pz [Qa] will 
also appear but will be disconnected from t because the shortest path through PI [through 
QJ from s to 5’s [from S, to t] is shorter than the corresponding path through Pz [QJ. 
Omitting these redundant paths we see that the layered network in the first phase is es- 
sentially the one in Fig. 5. 

In the second phase the picture is reversed: Due to the fact that the short parts of units 
number 1 in PI and Qi become saturated at the end of the first phase, it is now shorter 
to use the shortest paths in Pz and Qa with Tj,, S, and S, as Td,? p1 and pa. The second 
phase will push back the E units of flow in the bottlenecks and when it ends the bottle- 
necks of the units number 1 in Pz and Qs will become saturated. Phases number 3, 5,..., 
2v - 1 [4,..., 2V] will be similar to phase number 1 [2]. C onsequently, the time required 
will be L!(EV log2V). Note that the network of Fig. 6 has only O(V) vertices and edges 
more than the one in Fig. 5, and therefore it has also O(V) vertices and O(E) edges. 

PLANAR NETWORKS-A-KNOWN RESULT FOR FREE 

Consider the special case in which the network is s-t planar. (It is planar even with an 
additional edge connecting s and t.) Berge [2] described an O(V2) algorithm (which is 
essentially due to Ford and Fulkerson [8]) that solves the max-flow problem (not the 
sub-problem) using essentially Dinic’s approach. (The interesting part is that this works 
for the problem itself.) He always sends flow through the uppermost path. Itai and Shiloah 
[12] have found a clever way to implement this algorithm in 0( V log V). We get (for free) 
an alternative 0( V log V) algorithm by using our algorithm instead of Dinic’s to imple- 
ment Berge’s algorithm, and by showing that the number of times we break into a PF 
is O(V) in this case. (Recall that E = O(V) for planar graphs.) 

Consider Fig. 7 that describes a possible breaking into a PF in a vertex U. It contains 
(from top down) the additional edge from s to t, the last path from s to t that passed 
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FIGURE 7 

through u, and the part of the current path from the last vertex v before u which belonged 
also to the other path. Let e be the edge in the old path that enters u. 

We charge this breaking into a PF to e. Any edge e can be charged at most once, because 
all future paths will not enter the shaded area. (We use an upper path first.) Therefore 
the number of times we enter into another PF while constructing PF,, (i.e., K) is O(E) = 
O(V), and the time bound is 0( V log I’). 

We suspect that K = O(V) in the case that the network is planar but not s-t planar. If 
this is true, then we have an O(V2 log V) algorithm for max-flow in planar networks. In 
[12] there is a quite complicated 0( I’2 log V) algorithm for undirected planar networks. In 
case of directed planar networks it is still unknown how to use the planarity and the best 
algorithm is the one presented here whose time bound is 0( V2 log2 V). 

CONCLUSION 

There is no known lower bound for the max-flow problem. However, if one uses 
Dinic’s approach (and all the algorithms in Table 1 except the first one use it), then 
Q(EV) is a lower bound. So we are pretty close to making an optimal use of Dinic’s 
approach. 

The discovery of a common phenomenon in two quite different algorithms seems to us 
the most important contribution of this paper, especially in light of the lack of such com- 
mon phenomena in the theory of analysis of algorithms. There may be a neater way to 
state the Combinatorial Lemma and we are still trying to find it. Hopefully, it will turn 
out to be useful in analysing run times of other algorithms. 

APPENDIX 1: THE ORIGINAL VERSION 

We will refer to the edges of the layered network as small edges. The information will 
be maintained in big edges that are defined as follows: a big edge & is either a small edge 
e = (u, v) with length(e) = 1, source(e) = u and destination(e) = v, or it is composed of 
two big edges fil and ti2 such that source(&) = source(%), destination(&) = destination(&,), 
destination(i$) = souvce($), and length(&) = length(&) + Ze-ngth(&,). In the latter case &r 
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and 4 are the components of & and d is the bigger edge of e”<, i = 1, 2. If $I and e^, are the 
components of fi, then either destination(d) = t or Zength(&,) == Zength(&,) = a power of 
two (or both). A big edge 8 represents (in an obvious way) a path in the layered network. 
It can be viewed as a binary tree which will always be complete unless destination(&) = t. 
A big edge & belongs to a big edge jif the tree corresponding to 8 is a subtree of the tree 
corresponding tot At any given time and for any vertex V, at most one small edge in 
out(u) (the first edge in out(u) that has not been deleted) will be a big edge. A big edge & 
will have two additional fields associated with it:$om(e”) and capacity(&). These fields have 
exactly the same meaning as the flow and capacity fields of nodes in PF’s. For every 
vertex z, the algorithm will maintain Zurgest(v)-the largest big edge & with source(&) -- V. 

The algorithm will use two primitive operations. The first composes a new big edge & 
from &I to 6, (that satisfies the conditions mentioned above) and the second breaks a big 
edge e” into its components and transfers to them the flow of 6. The flow transfer is exactly 
the same as the flow transfer from a node to its sons in a PF. It is obvious how to imple- 
ment these two operations in a constant amount of time. We will also delete a small edge e 
from the layered network. The deletion will include setting Zurgest(source(e)) to undefined. 
We will sometimes visit a small edge e. It will mean making it a big edge and setting 
Zurgest(sowce(e)) to e. 

We now give the macro algorithm. The asterisks denote steps that are going to be 
refined later. 

1. Initialize and repeat 2-4: 

2’. Find a path from s to t. 

3”. If there is no such path, transfer flows to small edges and stop. 

4*. Push flow along path and destroy all saturated edges. 

Finding a path (2): we use a stack STACK to store a chain of big edges that represent 
the path being constructed. The vertex u is the last vertex of this path. The word edge 
will stand for big edge. 

A. u +- s; STACK +- empty; 
repeat B - J: 

B. If u is a dead-end then do: 

c. If STACK is empty, stop (the search has failed). 

D*. Otherwise destroy top-most edge in STACK. 

E. Else do: if largest(u) is undefined visit the first small edge in out(u) 

F. & + largest(u) 

G”. if bigger edge of & is defined, destroy all big edges to which & belongs. 

H*. insert e” into STACK and try to modify STACK. 

I. u + destination(~) 

J- if u = t, stop (a path has found). 

D is executed by repeatedly breaking the topmost edge in STACK replacing it by its 
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components until the topmost edge is a small edge, in which case it is deleted, and u is 
set to its source. G is executed by first finding all the ancestors of & in the tree and then 
breaking them from the root down. Trying to modify STACK in H means repeatedly 
composing the two topmost edges in STACK as long as they have equal length or the one 
on top, &, satisfies destination(e^) = t. 

Transferring flow to small edges at the end (step 3) is performed by visiting every vertex 
in the layered network, setting & + largest(a) and destroying all big edges to which e” 
belongs as in 2G. (Note that the order of the visits is not important.) 

Pushing flow in step 4 is achieved by setting f(Z) + c(g) and c(C) f- 0 for the unique 
edge e^ in STACK. Destroying saturated edges is executed by going down the tree that 
corresponds to & and breaking all saturated big edges on the way. 

This version does not use PF’s, but PF’s appear implicitly in it. It maintains large 
pieces of PF’s (the big edges). These pieces are usually paths of length which is a power 
of two. The only exceptions are paths that end at t. We could get rid of these exceptions 
by first adding some layers so that the number of layers is one plus a power of two. Thus, 
one can view this version as implementing PF’s by binomial queues. 

The version given in the paper is conceptually simpler because it implements a PF as 
one unit. On the other hand the above version seems to be slightly faster because in many 
cases the manipulations of the big edges require only a few operations even if the big 
edges involved represent long paths. For example, to split a big edge exactly in the middle 
requires only constant number of operations no matter how long the path it represents, 
while splitting a PF of length E always costs log 1. On the other hand the version using 
big edges seems to be too rigid to be useful for the s-t planar case. 

The analysis of the running time is similar to the one given in the paper. Also, similar 
examples show that the bound is tight for this version. One has to make sure that the 
vertices of Td,r in Fig. 5 (where the splits occur) belong to odd numbered layers. As a 
result, most of these splits (which in this version are replaced by step 2G) will involve 
destroying log 7 big edges. (Because if u is in an odd numbered layer Zength(Zurgest(u)) = I .) 

APPENDIX 2: THE PROOF OF THE COMBINATORIAL LEMMA 

Let F be the set of pairs that left S. By the conditions on entering pairs, a pair cannot 
leave S twice. So our goal is to estimate the size of F. Let b = [(M + N)/N] and let 
z = [log, N] f 1. For 1 f i < Z, let M, = {(p, q) E F j [q/bi-ll > [p/hi-‘1, [p/bil = 
p/hi]}; i.e., a pair in F belongs to Mi if i - 1 is the most significant position where the 
b-ary representations ofp and Q differ. Note thatF = lJ=i Mi . Also, let& = {( p, q} E Mi / 
among the pairs in Mi that left S in the same stage, ( p, a) has largest second component). 

FACT 1. For1 <i<z, iLij GM. 

Proof, The pairs leaving S in the same stage constitute a chain. 1 

FACT 2. If ( p, n) E Mi - L, and (p, Y) left S after ( p, q), then [r/hi-11 > [q/Z+] + I. 
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Proof. Since (p, 4) E Mi - Li , it follows that another pair (p’, Q’) in Mi left S at the 
same stage as ( p, 4), and p’ > 4. Since the leaving pairs constitute a chain p’ 3 4. By the 
conditions on entering pairs, Y > q’. It follows that [r/P’] > [q’/bi-11 > [p’/bi-‘1 > 
[q/P-l], and [r/P-‘] 3 [q/b”-l] + 1. (The strict inequality because ( p’, q’) E Mi .) a 

FACT 3. If (p, qx), (P, q&v (P, qb+l) are all in Mi - L, and left S in this order, then 
k?*+1Pl b kI/W + 1. 

Proof. Apply Fact 2 b times and divide by 6. 

FACT 4. /Mi-LLiI ,<bN. 

Proof. Assume ( P, d, ( P, e> ... t P, %+A are all in Mi - Li and left S in this order. 
By Fact 3 [qb+Jbij > [qJb”l + 1, but rqbfl/bil = [p/b*] = [q,/bil because ( p, qJ and 
( p, qa+l) belong to M+ontradiction. Therefore, there can be at most b pairs in Mi - Li 
that have p as a first component, and thus 1 Mi - Li 1 < bN. 1 

By Fact 1, Fact 4, and the size of z, 1 F 1 < (M + bN)(log,N + 1) < (2M + N) log bN/ 
log b = O(M + Wog(M + N)/log(r(M + N)IWl). I 

Remarks. 1. The condition on pairs leaving S can be weakened: It suffices to assume 
that if ( p, 4) and ( p’, q’) left S in the same stage, then if q’ > q then p’ 3 q. 

2. The bound given is known to be best only for M = B(N) and M = Q(N”) for 
a > 1 [17]. 

3. This bound looks different but is exactly the same as the one in [17]. 

4. For the purpose of proving the time bound of the algorithm the rough bound of 
O((M + N)log(M + N)) su fi ces. This bound can be obtained by taking 6 = 2 in the 
proof above. 
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Note added in proof. In his Ph.D. thesis [18] Sleator found an ingenious way to implement our 
algorithm in time (EVlog V). He modified a new data structure, called a biased 2-3 tree [19], 
and used this data structure instead of 2-3 trees to represent PF’s. The only other change is that 
the order of concatenations during a stage is modified. All the PFl’s of a maximal sequence of steps 
5 and 6 are first concatenated and only then this PF is concatenated to PF, . The important property 
of the new data structure is that except a total of O(E) operations on PF’s the cost of the operations 
in a stage sum up telescopically (the ith cost is ai - ai-*). Consequently, each term in the bound 
for the time bound is O(E log V). The examples given here show that the O(EV log I’) bound is 
tight. 
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