Theoretical Computer Science 14 (1981) 103-111
North-Holland Publishing Company

ON THE THEORETICAL EFFICIENCY OF VARIOUS
NETWORK FLOW ALGORITHMS

Zvi GALIL*

Department of Mathematical Sciences, Computer Science Division, Tel-Aviv University, Israel

Communicated by M. Paterson
Received December 1978
Revised March 198G

Abstract. The time bounds of various algorithms for finding the maximal flow in networks are
shown to be tight by constructing one parametrized family of network flow problems and showing
that the algorithms achieve the corresponding bounds on inputs irom this family.

1. Introduction

One of the well-known problems in combinatorial optimization is the problem of
finding the maximal flow in a given network (max-flow in short). The problem was
posed and solved by Ford and Fulkerson [8]. (See also [7].) The interesting history of
the problem is summarized in Table 1, that gives the upper bounds of the time and
space complexities of the various algorithms in terms of the number of vertices V and
the number of edges E in the network.

The runtime of the first algorithm cannot be bounded above by a function of V anrd
E. This fact is well known (see for exarnple [9] for more details) and therefore we will
deal with the other algcrithms only. The last algorithm by Malhotra, Pramodh
Kumar and Maheshwari [13] does not improve algorithims number 3 to 5. However,
it is very simple and probably is the best when the graph is very dense (Z = V3.

In this paper we construct one parameterized family of network fiow problems
{Prmn|l, m, n>0}. For every V>0 and every E, V<E < V?, we can fix /, i, n so
that the network of Pj,,, will have no more than V vertices and no more than E
edges and each algorithm in Table 1 will require time and space proportiona! to the
corresponding entries in Table 1 for solving Py .. With regard to space we will only
show that Karzanov’s algorithm requires space proportional to V2. The fact that the
others use linear space is straightforward.

* Part of the: work reported in this paper was done while the author was visiting the Mathzmatical

Sciences Department at the IBM Thomas J. Watson Research Center. At Tel-Aviv University the work of
the author was supported in part by the Bat-Sheva Fund.

0304-3975/81/0000-0000/$02.50 © North-Holland Putlishing Company

104 Z. Galil

Table 1
The various solutions
Solutions Time Space
0 Ford and Fulkerson (1956} —_ E
i Edmonds and Karp (1969) F2V E
2 Dinic (1970) EV? E
3 Karzanov (1973) v v?
4 Cherkasky (1976) VWE E
5 Galil (1978) VPEY? E
6 The three Indians (1978) V3 E

There are several known partial results concern 1g the bounds in Table 1. Zadeh
[13]showed that the bound of Edmonds and Karp’s algorithm is tight in case E = V*
and Even and Tarjan [6] noted that the same examples imply that the bound of
Dinic’s algorithm is tight in case E = V2. However Zadeh’s examples scem to require
a number of edges proportional to V2. Baratz [1] showed that the bound on
Karzanov’s algorithm is tight. However, his examples require orly O(V?) steps by
che three Indians’ algorithm. Also, his examples require time proportional to V> by
Karzanov’s algorithm only if the edges are scanned in a certain order. If we use the
heuristic of scanning edges with smaller capacities first, then his examples require
only O(V?) steps. A. Itai [11] has constructed another example that shows that the
bound of Karzanov’s algorithm is tight.

We assume that the reader is familiar with the various algorithms and will not
discuss them here. The last five algorithms in Table 1 use Dinic’s approach. Ip each
phase Dinic constructs a layered network and solves a subproble.: on it. The four
improvements on Dinic show how to solve the subproblem faster. Althov-%
Edmonds and Karp do not construct the layered network one can implicitly find it in
their algorithm. We define a phase in Edmonds and Karp’s algorithm to be the period
of time during which the shortest flow augmenting path is of the same length.
Consequently, there is an obvious correspondence between a phase in Dinic’s
algorithm and a phase in Edmonds and Karp’s algorithm.

The structure of the paper is the following: In Section 2 we construct G, ., the
network of P, ,,, ., and then describe for a given V, E, how to choose I, m, n so that the
rumber of vertices [edges] in P, is at most V [E] and the number of phases
required by Dinic’s algorithm (or Edmonds and Karp’s algorithm) is proportional to
V. In Section 3 we explain why each algorithm requires time proportional to the

corresponding entry in Table 1 divided by V to complete one phase, and thus prove
that the bounds in Table 1 are tight.

2. The networks Gy, ,

Gi,m.n has three sections: the s-section (the sectic:: with endpoints s, p, q' in Fig. 1),
the ¢-section (the one with endpoints ¢, p’, q) and the middle section (the rest).

Theoretical efficiency of network flow algorithms 105

The middle section is described in Fig. 2. It consists of two sets of vertices §; and $>
with m vertices each. Each vertex in S; {S-] is connected to n vertices in S, [S,].
These nm edges are called bottlenecks and their capacities are 1. In addition there are
ten more vertices on two simple paths (from g’ to ¢ and from p to p'). Also, p [q] is
connected to all the vertices in §; [S,]. All the edges in the middle section except the
bottlenecks have infinite (or large enough) capacities. All together there are 2m + 10
vertices and nm +2m + 8 edges in ‘hic middle section.

The s-s:ction [the symmetric t-section] is composed of 2/ units, | of them between
sand p [p' and t]and ! of them between s and ¢’ [q and t]. A unit is described in more
detail in Fig. 3. All the edges in the unit except the marked one have infinite capacity.
The marked one is called the bottleneck of the unit and has capacity imn if it is the o
unif from s [¢]. Such a unit is called & unit of type i and there are four units of type i for
1=+l We distinguish between them by referring to the upper [lower] left [right]

106 Z. Galil

Fig. 3.

type i unit in Fig. 1. The part of a unit that includes its bottleneck is called the shorter
part and is a simple path of length 3. The other part is called the longer part and is a
simple path of length 12.

The number of vertices in the s-section [¢-section]is 28/ and the number of edges
is 301. Consequently the number of verticesin G: wu: Vimn — 56/ +2m + 10 and the
number of edges is E;,, = mn +60/+2m +8.

We first describe what happens in each phase. We assume inductively that after 27
phases 0=<i </, the flow is 2imn, the bottlenecks in all units of type j, j<i, are
saturated, the flow in the bottlenecks of the other units is intn, and there is no flow in
the bottlenecks of the middle section. Notice that the claim holds when i = 0. We will
show that after two more phases the claim will hold for i +-1.

The layered network at the beginning of the (2i + 1)* phase is described in Fig. 4.
Units of type larger than / will be represented in it by their shorter par:. Units of type
not larger than i will be represented by their lcnger part. (There is one exception that
will be explained below.)

Except for the shorter parts and longer parts of some units that do not appear in the
layered network two more edges will be missing and they are pointed at by arrows
numbered one and two in Fig. 4. The first is the las* cdge on the path from g’ to q. This
is because the paihis p » §; - §, - q are of length 3, the path g » *q is of length 4, and

Theoretical efficiency of network flow algorithms 167

N

e i+)
i i
-————¢
° °
| o |
s
Fig. 4.

p and ¢’ are in the same laver. The second missing edge is the last edge in the longer
part of the upper right type 1 unit. (This is the excepticn mer. inned above.) The
reason for this is that the paths p » §; > S, > g > *t are shorter by one than the path
p-*p'>*t (Their length are 12i +3(/ —i)+3 and 12i +3(/ — i)+ 4 resp.)

During the (2i-+1)st phase mn of units of flow will be added saturating the
bottlenecks of the middle section, and the bottlenecks of the lower right and upper
left units of type i +1.

At the beginning of the (2i +2)" phase, the layered network will lock like the one
in Fig. 5. This time the units of type j, j =i, and the lower right and upper left units of
type i + 1 will be represented by their longer part and the other units by their shorter
part. There are two exceptions that wiil be explained below. Except for the parts of
some units that deo not appear in the layered network, three more edges will be
missing and they are pointed at by arrows numbered one and two in Fig. 5. The first is

108 Z. Galil

Fig. 5.

the iast edge on the short pz:: of the unii of type | that enters p. This is because the
distarce from s to p going on'v on the right side is R =1Z2(i + 1)+ 3 —i—1), while
the distance goingtop viaq'-»*q-»§, 8, » pis 12i +3(1-)+7 = K —2. The other
two are the last edges on the longer sart of the upper left type 1 unit. Again, the
reason is that the le:gth of the path fym 7 to ¢ on the left is R while the length of the
path g > S-S, »>p->*t is R~2. Consequently mn additional flow units will be
rushed during the (2i +2)" phase. The bottlenecks of the middle scction will become
flowless and the bot¢lznecks of the lower left and upper right type (i + 1) units will
become saturated. As a result the flow after 2/+2 phases s (2i +2)mn, the
bottlenecks of all units of type j, j<i+1, a e saturaied, flow in th. bottlenecks of
other units is (i +1)m#, and the flow in the | ottlenech . of the middle section is zero.
This completes the proof of the inductive JJaim for i + 1.

We can conclude that the number of phases is 2/, and that the iuyered graph in

every stage looks like the one n Fig. € if we ignore the veriices from which ¢ is not
reachabie.

Theoretical efficiency of network flow algorithms 169

:

__..|

}-—— DISTANCE 2 o £

T // M
MV o

T NV;

Fig. 6.

Given V and E such that 120< V<E =< V2 choose m = |§V |, | = |136V] and
n=2|E/V|.Itfollows that V. =2m + 561 +10<iV+iV+10<V and Emn =
nm+601+2m +8<iE+3iV-iV +8<E. Also, the number cf phases is 2/=
2|3V] = 2(V). The assumption that V =120 does not limit generality because if
V <120 and V < E =< V?all the bounds in Table 1 are shown to be tight by a proper
choice of the constant.

3. The behavior of the various algorithms

As was noted in the introducticn, Edmonds and Karp’s algorithm does not
construct the layered network. However, in any phase, any time it finds a flow
augmenting path (f.a.p.) it traverses at least the edges of the layered network that
have not been deleted yet at this point in that phasc. The laycred network at the
beginning of each phase is described in Fig. 6. The algorithm will discover mn f.a.p.’s
in each phase. Fach f.a.p. will increase the flow and will lead io the deletion of the
corresponding saturated bottleneck. Consequently, the number of steps by Edimonds
and Karp’s algorithm during one phase, is 2((mn)’) = 2(E°).

110 Z. Galil

Dinic’s :lgorithm wili require only a number of sieps proportional to the length of

ine layered network to discover each f.a.p. So each of the mn(=£2(E)) f.a.p.’s will

equire £2(/) : ={2(V)) steps. Consequenctly the number of steps by Dini:’s algorithm
during one phase is 2(EV).

Karzanov’s algorithm will bring mn units of flow 0 v; - the first vertex of
T,. It will be able to push forward » units of fiow through the n bottleaecks les ving
v1. These units of fiow will be pushied to . Then the excess of flow on v; will be
balanced and be transferred to v, — the second vertex of T, 2aadsoon. Soin one phase
n units of flow will be pushed m times from T, to . Each of these m (= £2(V)) pushes
requires §2(1)(=$2(V)) steps. Consequently the number of steps by Karzanov’s
algorithm during one phase is 2(V'%). Moreover, each of the 2(/)(= {V)) vertices
on the way from 7> to ¢ has a stack that records the m (= £2(V)) flow increments due
to the m pushes of flow. Therefore, Karzanov’s algorithm requires 2(V?) space.

Cherkasky’s [Galil’s] algorithm selects some of the layers to be special layers. The
special layers are chosen in such a way that Ex = VE'/?[Ex = (VE)¥?], where x isa
tound on the number of layers between two special layers. In the case of the laycred
networks of Fig. 6 the special layers can ',e chosen to be in equal distar.ce from one
another. (The only exception is that neither T nor I'; can be a special layer.) A
superlayer consists of two successive special layers and the vertices and ¢dges in
between them. Consider the superlayer that contains the bottlenecks. Tor pushing
the flow through *his superlayer Cherkasky’s algorithm requires x steps for pushing
each unit of flow through one of the bottlenecks. Consequently it requires 2(nma) =
£(Ex) = 0(VE"?) steps per phase. Galil’s algorithm constructs in ezch superlayer a
forest with leaves in one special layer and roots in the other. However, since all
special layers in our case contain one vertex only, each forest consists of one big edge.
The ‘forest’ which .orresponds to the superlayer with the bottlenecks will change nm
times. Each time 1 unit of flow is pushed through it the unique big edge will become
saturated, and the ‘forest’ will be reconstructed after {2(x) steps. Consequently,
Galil’s algorithm requires 2(mnx) = 2(Ex) = Q((VE)*”*) steps per phase.

The three Indians’ algorithm finds in the layered network the vertex with minimal
flow potential a. In our case this will always be one of the vertices in T;u 1%. The
algorithm pushes a units of flow from this vertex to ¢ and from it back to s and then
deletes this vertex. As a result at least m (=£2(V)) vertices will be deleted in this way.
Each push of flow requires at least 2(/)= (V) steps. Consequently, the chree
Indians’ algorithm requires ((V?) steps per phase.

Since the number of phases is 2/ = 2(V) we can conclude that che number of steps

that the algorithms above need to s~lve Py, is proportional to the corresponding
entries in Table 1.

4. Conciusion

We have constructed a parametrized family of network flow problems
{Pymn|!, m, n'> 0} and showed how for giver V and E, V< E < V*, we canfix [, m, n

Theoretical efficiency of nctwork flow algorithms 111

so that the network obtained has at most V vertices and E edges, and requires time
proportional to the corresponding entry in Table 1 when processed by the various
algorithms. Thus we have proved that the time bounds in Table 1 are tight. We have
constructed the simplest possible network probiems. Consequently, one can modify
the algorithms by adding to them heuristics that take advantage of the simple form of
the layered networks that arise. "We have iwo such heuristics: One takes advantage
cf the fact that all layers except two have exactly one vertex. The other makes use of
the fact that most of the edges of the layered networks that arise appear between two
layers. The modified algorithms no longer require times proporticnal to those in
Table 1.

However, we were able in both cases to modify Py, . (by slightly complicating
them) in such a way that the additional be+:istics do not help.

Recently, the author together with Naamad discovered an O(EV log® V)
algorithm for the max-flow problem [10]. The family of networks described above,
requires only O(E'V log V) time by this algorithm. More complicated examples are
needed to establish the tightness of the O(EV log” V) time bound. These examples
are described in [10].

References

[1] A.E.Baratz, Construction and analysis of nexwork {low problein which forces Karzanov algorithm to
O(r®) running time, MIT, LCS, TM —83, (:977).

[2] B.V. Cherkasky, Algorithm of construction of maximal flow in networks with complexity of
O(V*JE) operations (in Russian), Math. Methods Solution Econ. Problems T (1977} 117-125.

[3] E.A. Dinic., Algorithm for solution o a probiem ¢f maximal flow in a neiwork with power
estimation, Soviet Math. Dokl. 11 (1970) 1277-1280.

[4] J. Edmonds and R. M. Karp, Theoretical iniprovement in algorithmic efficiency for network flow
problems, JACM 19 (2) (1972) 248-264.

[5] S. Even, The max-flow algorithm of Dianic and Karzanov: An exposition, MIT, LCS, TM-80 (1976).

[6] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975)
507-518.

[7" L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,
1962).

8] L.R. Ford and D.R. Fulkerson, Maximal fiows through a network, L.R.E. Trans. informanva
Theory (2) (1956) 117-119.

[9] Z. Galil, A new algorithm for the maximal flow problem, Proc. 19th IEEE Symposium on
Foundations of Computer Science, Ann-Arbor, MI (1978} 271-245; to appear in Acta Informat. as
“An O(EZ/ 3y 3) algorithm for the maximal flow problem™.

[10] Z. Galil and A. Naamad, Network flow and generalized path compression, Proc. 11th Annuel ACM
Symposium on Theory of Computing (1979) 13-26; to appear in J. Comput. System Sci. as “An
O(E Vlog2 V) algorithm for the maximal flow problem”.

[11] A. Itai, private communication (1978).

[12] A.V.Karzanov, Determining the maximal flow in a network by the method of preflows, Sovier Math.
Dokl. 13 (1974) 434-437.

[13] V.M. Malhotra, M. Pramoch Kumar and S.N. Maheshwari, An O(Va)algorithm for finding the
maximum flows in networks, Information Processing Lett. T, (6) (1978) 277-273.

[14] N. Zadeh, Theoretical efficiency of the Edmonds-Karp algorithm for compuring maximal flows,
JACM 19 (1) (1972) 184-192.

