
Theoretical Computer Science 14 (1981) 103-111
North-Holland Publishing Company

ON T H E T H E O R E T I C A L E F F I C I E N C Y OF V A R I O U S
N E T W O R K F L O W A L G O R I T H M S

Zvi GALIL*
Department o[Mathematical Sciences, ('omputer Science Division, Tel~Aviv University, Israel

Communicated by M. Paterson
Received December 1978
Revised March 1980

Abstract. The time bounds of wlrious algorithms for finding the maximal flow in networks are
shown to be tight by constructing one p~rametrized family of network flow problems and showing
that the algorithms achieve the corresponding bounds on inputs from this family.

1. Introduction

One of the well-known problems in combinatorial optimization ~s the problera of
finding the maximal flow in a given network (max-flow in short). The problem was
posed and solved by Ford and Fulkerson [8]. (See also [7].) The interesting history of
the problem is summarized in Table 1, that gives the upper bounds of the time and
space complexities of the various algorithms in terms of the number of vertices V and
the number of edges E in the network.

The runtime of the first algorithm cannot be bounded above by a function o1! V and
E. This fact is well known (see for exaraple [9] for more details) and l~herefore ,we will
deal with the other algorithms only. The last algorithm by Malh~tra, Pramodh
Kumar and Maheshwari [13] does not improve algorithms number 3 to 5. However,
it is very simple and probably is the best when the graph is very dense (L ~ V2).

In this paper we construct o n e parameterized family of network flow problems
{Pt.,,,.,, 1/, m, n > 0}. For every V > 0 and every E, V ~< E ~< V 2, we can fix I, m, n so
that the network of Pt.,,,., will have no more than V vertices and no more than E
edges and each algorithm in Table 1 will require time and space proportiona~ to the
corresponding entries in Table 1 l~or solving It.,,,.,. With regard to space we will only
show that Karzanov's algorithm requires space proportional to V 2. The fact that the
others use linear space is straightforward.

* Part of the" work reported in this paper was done while the amhor was visiting the Math~.~matical
Sciences Department at the IBM Thomas L Watson Research Center. At Tel-Aviv University the work of
the author was supported in part by the Bat-Sheva Fund.

0304-3975/81/0000-0000/$02.50 © North-Holland Put:l~shing C.ompany

104 Z. Galil

Table 1
The various solutions

Solutions Time Space

0 Ford and Fulkerson (1956) - - E
Edmonds and Karp (1969) F2V E

2 Dinic (19'70) E V 2 E
3 Karzanov (1973) V 3 V 2
4 Cherkasky (1976) V24E E
5 Galil (1978) VS/3E2/3 E
6 The three Indians (1978) V 3 E

There are several known partial results concern ag the bounds in "I able 1. Zadeh
[13] showed that the bound of Edmonds and Karp"s algorithm is tight ia case E = V 2
and Even and Tarjan [6] noted that the same examples imply that the bound of
Dinic's algorithm is tight in case E = V 2. However Zadeh's examples seem to require
a number of edges proportional to V 2. Baratz [1] showed that the bound on
Karzanov's algorithm is tight. However, his examples require oply O(V 2) steps by
ehe three Indians' algorithm. Also, his examples require time p-oportional to ~3 by
Karzanov's algorithm only if the edges are scanned :in a certain order. If we use the
heuristic of scanning ec~ges with smaller capacities first, then his examples require
only O(V 2) steps. A. Itai [11] has constructed another example that shows that the
bound of Karzanov's algorithm is tight.

We assume that the reader is familiar with the., various algorithms and will not
discuss them here. The last five algorithms in Table 1 use Dinic's approach. Ip each
phase Dinic constructs a layered network and solves a subproble, , on it. The four
improvements on Dinic show how to solve the subproblem faster. Althov-~.i
Edmonds and Karp do not construct the layered network one can implicitly find it in
their algorithm. We define a phase in Edmonds and Karp's algorithm to be the period
of time during which the shortest flow augmenting path is of the same length.
Consequently, there is an obvious correspondence between a phase in Dinic's
algorithm and a phase in Edmonds and Karp's algo~rlthm.

The structure of the paper is the following: In Section 2 we construct G,.m., the
network of Pt.m.,, and then describe for a given V, E, !how to choose l, m, n so that the
~umber of vertices [edges] !in Pt, m., is at most V liE] and the number of phases
r,~quired by Dinic's algorithm (or Edmonds and Karp's algorithm) is proportional to
V. In Section 3 we explain why each algorithm requires time proportional to the
corresponding entry in Table 1 divided by V to complete one phase, and thus prove
that the bounds in Table 1 a~re tight.

2. The networks GI.m.,

Gl, m.n has three sections: the s-section (the sectic.; ~. with endpoints s, p, q' in Fig. 1),
the t-section (the one with endpoints t, p', q) and the middle section (the rest).

Theoretical efficiency of network flow algorithms 105

t

I I

2 2

£ 2

1 £

s

Fig. 1.

The middle section is described in Fig. 2. It consists of two sets of vertices S~ and $2
with m vertices each. Each vertex in S: [S2] is connected to n vertices in $2 [S~].
These nm edges are called bottlenecks and their capacities are 1. In :addition there are
ten more vertices on two simple paths (from q' to q and from p to p'). Also, p [,7] is
connected to all the vertices in $1 [$2]. All the edges in the middle ,;ection except the
bottlenecks have infinite (or large enough) capacities. All together ~there are 2m + 10
vertices and nm + 2m + 8 edges in :.lie middle section.

The s-s,zction [the symmetric t-section] is composed of 21 units, l of them between
s and p [p' and t] and l of them between s etnd q' [q and t]. ,~, unit is descriOed in more
detail in Fig. 3. All the edges in the unit except the marked one have infinite capaq:ity.
The marked one is called the bottlenect~ of the unit and has capacity iron if it is the i th
un~iy from s It]. Such a unit is called ~L unit oftype i and there are four units of type J! for
1 ~< i ~ I. We dis~.inguish between them by referring to the upper [lower] lef~ [right]

106 Z. Galil

q pi

Fig. 2.

Fig. 3.

type i unit in Fig. 1. The part of a unit that includes it~ bottleneck Js called the shorter
part and is a simple path of length 3. The other part :is, called the longer part and is a
simple path of length 12.

The number of vertices in the s-section It-section] is 281 and the number of edges
is 30/. Consequently the number of vertices in G,. , , , : V~,m.,, - 56 /+ 2m + 10 and the
number of edges is Et.,,., = mn+ 60 /+ 2m + 8.

We first describe what happens in ea,=h phase. We assume inductively that after 2 i
phases 0 ~<i< 1, the flow is 2iron, the bottleneck~ in all units of type 1, /<~ i, are
saturated, the flow in the bottlenecks of the other units is &~n, and there is no flow in
the bottlenecks of the middle section. Notice that the claim holds when i = 0. We will
show that after two more phases the claim will hold for i + 1.

The layered network at the beginning of th,~ (2i + 1),t phase is described in Fig. 4.
Units of type larger than i will be represented in it by t,aeir shorter part. Units of type
not larger than i will be represented by their longer part. (There is one exception that
will be explained below.)

Except for the shcrter parts and longer parts of some unit,~ that do not appear in the
layered network two more edges will be missing and they are pointed at by arrows
numbered one and two in Fig. 4. The first is the. las" edge on the path from q' to q. This
is because the pa~.L~ p -. S~ -. ,$2-* q are of length 3, the path q ~ *q is of length 4, and

Theoretical efficiency of network flow algorithms 107

t

0 Q

0 Q

• •

i+l

o

: °
0

0

Q

• •

Q Q

• •

o

$

I+1

.e

D

l

Fig. 4.

p and q' are in the same layer. The second missing edge is the last edge in the longer
part of the upper right type 1 unit. (This is the exception mer.:;oned above.) The
reason for this is that the paths p --} S1 "-} S2 -'} q --} *t are shorter by one than the path
p--} *p'--} *t. (Tiaeir length are 12a? + 3 (/ - i) + 3 and 12i + 3 (l - i) +4 resp.)

During the (2i+ 1)st phase mn of units of flow will be added saturating the
bottlenecks of the middle section, and the bottlenecks of the lower right and upper
left units of type i + 1.

At the beginning of the (2i + 2) "d phase, the layered network will lock like the one
in Fig. 5. This time the units of type j, j I> i, and the lower right and upper left uaits of
type i + 1 will be represented by their longer part and the other units by their shorter
part. There are two exceptions that will be explained below. Except for the parts of
some units that do not appear in th~ layered network, three more edges will be
missing and they are pointed at by arrows numbered one and two in Fig. 5. The fi~rst is

108 Z. Galil

t

i+! l i+l
i+2~ ~'

.

.

•

q ~-!

4b

q ;

• +2
e

o ,

. :
o

o
o

S

Fig. 5.

the]ast edge on the short p=: :~ of the unit vf type l *hat enters p. This i3 because the
distar,.e from s to p going on~v on the right side is Jqt - i2(i + 1) + 3(1 - i - 1), while
the distance going to p viaq'--, *q -, $2~ S~- ,p is 12i + 3 (l - ;) + 7 = R - 2 . The other
two are the last edge~ on the longer ~art of the upper left type 1 unit. Again, the
reason is that the length of the path f~ ~.m e, to t on the left is R while the length of tbe
path q - . $2~ $1-~ p ~ *t is R - 2 . Consequently mn additional flow units will be
r, ushed during the (2i + 2)"d phase. The bottlenecks of the middle section will become
flowless and the bottl,~necks of the lower left and upper right type (i + 1', units will
become saturated. A.s a result the flow afte, r 2 i + 2 phases ;~ (2 i+2)mn , the
bottlenecks Of all units of type i; j ~< i + 1, a e saturated, flow in th'., bott ' .eneeks of
other units i~ (i + l)mn, and the flow ~n the ~ ott lened, ~ cf the middle section is zero.
This completes the proof of tLe inductive claim for i + I.

We can conclude :hat the number of phases is 21, and tha~ the layered graph in
every .~tage looks like the ,ane in Fig. 6 if we ignore the vertice~ from which t is not
reachabie.

Theoretical efficiency of network flow algorithms 109

t

T
^1
h.I

Z

±

CAPACITY ONE

Fig. 6.

I V Given V and E such that 120~ V<~E<~ V "2 choose m = t&vJ, I and
n = 2 [E / V] . It follows that V~.~., = 2m + 56l + 10~<¼V +½V+ 1 0 ~ < V and Et,,,., =

nm +60l + 2m +8~<~E + 1 V +¼V + 8 ~< E. Also, the number ef phases is 21 =
2 L~V] = J?(V). The assumption that V >~ 120 does not limit generality because if
V ~< 120 and V ~ E ~< V 2 all the bounds in Table 1 are shown to be tight by a prope~"

choice of the constant.

3. The behavior of the various aigoldthms

As was noted in the introducticn, Edmonds and Karp's algorithm does not
construct the layered r4etwork. However, in any phase, any time it finds a flow
augmenting path (f.a.p.) it traverses at least the edg('s of the layered netwo=k that
have not been deleted yet at this point in that phas,~. The layered network at the
beginning of each phase is described in Fig. 6. The algorithm will discover mtt f.a.p.'s
in each phase. |Each f.a.p, will increase the flow and will lead to the deletion of the
corresponding saturated bottleneck. Consequently, tt-e number of steps by Ed~londs
and Karp's algorithm during one phase, is O((mn)2) = t2(E:) .

! 10 Z. Galil

Dinic's algorithm will require only a number of steps proportional to the length of
the layered network to discover each f.a.p. So each of the r n n (= f l (E)) f.a.p.'s will
require O(l) ~ =O(V)) steps. Consequently the nur~al:,er of steps by Dim:'~ algorithm
during one phase is 12(EV).

Karzanov'~ algorithm will bring mn units of flow ~0 vl -- the first vertex of
T1. It will be able to push forward n units of flow ~hrou[,h the n bottleaecks leaving
v~. These units of flow will be pushed to t. Then the excess of flow on v~ will be
balanced and be transferred to v2 - the second vertex of 7"1 o'ld so o n So in one phase
n units of flow will be pushed m times from Tz to t. Each of tnese m(= O(V)) pushes
requires J'~(/)(=/2(V)) steps. Consequently the ,aumber of steps by Karzanov's
algorithm during one phase is .O(V2). Moreover, each of the f/(l)(=/?f. V)) vertices
on the way from T2 to t has a stack that records the m (= /2 (V)) flow increments due
to the m pushes of flow. Therefore, Karzanov's algorithm require~ f2(V 2) space.

Cherkasky's [Galirs] algorithm selects some of the layers to be special layers. The
special layers are chosen in such a way that Ex = VIZ'~/2[Ex =. (VE)2/3], where x is a
[',ound on the number of layers between two special layers. In the case of the layered
networks of Fig. 6 the special layers can !~e chosen to be in equal distarLce from one
another. (The only exception is that neither 7'1 nor /'2 can be a special layer.) A
superlayer consists of two successive special layers, and the vertices and cd,~es in
between them. Consider the superlayer that contains the bottlenecks. ["or pushing
the flow through ~.h;~ superlayer Cherkasky's algorithm requires x steps for pushing
each unit of flow through one of the bottlenecks. Consequently it req~Jires f2(nm.~) =
f2 (Ex) = 1"1 (V E ~/~) steps per phase. Galil's algorithm constructs in e~ch superlayer a
forest with leaves in one special layer and roots in the other. However, since all
special layers in our case contain one vertex only, each forest consists of one big edge.
The 'forest' which ~3rresponds to the superlayer with the bottlenecks will change nm
times. Each time a unit of flow is pushed through it the unique big edge will become
saturated, and the 'forest' will be reconstructed after f l (x) steps. Consequently,
Galil's algorithm requires O(rnnxJ = f l (E x) = I"I((VE) 2/3) steps per phase.

The three Indians' algorithm finds in the layered network the vertex with minimal
flow potential a. In our case this ,vill always be one,, of the vertices in TI u '/½. The
algori:thm pushes a units of flow from this vertex to t and from it back to s and then
deletes this vertex. ~s a result at least m(= O(V)) vertices will be deleted in this way.
Each push of flow requires at least O (l) - f l (V) steps. Consequently, the three
Indians' algorithm requires 12,(V 2) steps per phase.

Since the number oi phases is 21 = O(V) we can conclude that the number of steps
that the algorithms above need to s'~Ive Pt,,,,.,, is proportional to 1he corresponding
et~tries in Table 1.

~. Conci usion

We have constracted a parametr~ze5 family of network flow problems
{Pt.,,.n l i!, m, n > 0} and showed how for giver V and U, V <~ E ~< V 2, we can fix/, m, n

Theoretical efficiency of network flow algorithms ~ 11

so that the network obtained has at most V vertices and E edges, ;and requires time
proportional to the corresponding entry in Table 1 when processed by the variious
algorithms. Thus we have proved that the time bounds in 'Fable 1 are tight We have
constructed the simplest possible network problems. Consequently, one can modify
the algorithms by adding to them heuristics that take advantage of the simple form of
the layered networks that arise. We have two such heuristics: One takes advantage
of the fact that all layers except two have exactly one vertex. The other makes use of
the fact that most of the edges of the layered networks that arise appear between two
layers. The modified algorithms no longer require times proportional to those in
Table 1.

However, we were able in both cases to modify Pt, m., (by slightiy complicating
them) in such a way that the additional he~:~istics do not help.

Recently, the author together with Naamad discovered an O(EV!og 2 V)
algorithm for the max-flow problem [10]. The family of networks described above,
requires only O (E V log V) time by this algorithm. More complicated examples are
needed to establish the tightness of the O(EV log2 V) time bound. These examples
are described in [10].

References

[lO]

[11]
[12]

[13]

[14]

[1] A.E. Baratz, Construction and analysis of network flow problem which forces Karzanov algorithm to
O(n 3) running time, MIT, LCS, TM -83, (~977).

[2] B.V. Cherkasky, Algorithm of construction of maximal flow in networks with complexity of
O(V2x/~?) operations tin Russian), Math Methods Solution Econ. Problems 7 (1977) 117-125.

[3] E.A. Dinic., Algorithm for solution o, ~ a problem cf maximal flow in a nea~,ork with power
estimation, Soviet Math. Dokl. 11 (1970) 1277-1280.

[4] J. Edmonds and R. M. Karp, Theoretical improvement in algorithmic efficiency for network flow
problems, J.ACM 19 (2) (1972) 248-264.

[5] S. Even, The max-flow algorithm of Diaic and Karzanov: An e~,position, MIT, LCS, TM-80 (1976).
[6] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAMJ. Comput. 4 11975)

507-518.
[7. ~ L.R. Ford and D.R. Fulkerson, Flows in Netw,rks (Princeton University Press, Princeton, N I,

1962).
[8] L.R. Ford and D.R. Fulkerson, Maximal flows through a network, LR.E. Trans. informal,on

Theory (2) (1956) 117-119.
[9] Z. Galil, A new algorithm for the maximal flow problem, Prec. 19th IFEE Symposium on

Foundations of Computer Science, Ann-Arbor, MI (1978~ 2"i1-245; to appear in Acta In]'ormat. as
"An O(E 2/3 V 5/3) algorithm for the maximal flow problem".
Z. Galii and A. Naamad, Network flow and generalized path compression, Prec. 11th Annual ACM
Symposium on Theory of Computing (1979) 13-26; to appear in J. Comput. System Sci. as "An
O(EVlog 2 V) algorithm for the max:lmal flow problem".
A. Itai, private communication (1978).
A.V. Karzanov, Determining the maximal flow in a network by the method of prefiows, Soviet Math.
Dokl. 15 (1974) 434-437.
V.M. Malhotra, M. Pramodh Kumar and S.N. Maheshwari, An O(V3)algorithm for finding Ithe
maximLm flows in networks, ln[ormation Processing Lett. 7, (6) (1978) 277-278.
N. Zadeh, Theoretical efficiency of the Edmonds-Karp algorithm for computing maximal flows,
J.ACM 19 (1) (1972) 184-192.

